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ABSTRACT

This paper provides a comprehensive account of analytical
results for computing electromagnetic fields that are induced
by ocean sea water as a result of 1ts moticn relative to the
geomagnetic field. The emphasis is on the characterization of
magnetic field and magnetic field gradieat spectra induced by
internal waves and surface waves in a deep ocean environment.
The theoretical results are formulated sc as to be directly
applicable to the computation of sea water generated magnetic
noise and to the assessment of 1ts deleterious effects on the
sensitivity of magnetic sensors employed for magnetic snomaly
detecticn over an open ocean. #¥agnetic field component and
gradient spectra are computed both for stationery and moving

sensor observaticn platforms.
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Hathematics may be compared fo a mill of exquisite workmarship
which grinds you stvff of any degree of finmemess,
but neventheless what you 2et out depends on what you put in ~-°
and as the grandest mitl in the weald
will not extract wheat {Lour §rom peapods,
pages cof feamulae will noil get a defimite result out of Leose data.

.« - « T.H. Huxley
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SUMMARY AND CONCLUSIONS

This paper comprises results of an analysis of electromag-
netic fields induced hy the interaction of ocean currents with
the geomagnetic field. The work 1s part of an ongoing erfort
at IDA in support of the D2RFA program on nonacoustic ASW tech-
nidues. The objective of the effort reported on herein was to
develop a gereral anaiytical formulation for the computaticn
of electromagnetic field spectra induced@ by the motion of sea
water in the upper layers of a deep ccean with particular em-
phasis on surface waves énd interral waves.

The intended application of the anziytical and numerical
results 1s to the characterizatiorn of ocean current generated
magnetic noise that could degrade the’performance of sensitive
instruments (e.g., superconducting gradiometers) employed ia
magnetic anomaly detection cver a dezp ccean. Although exist-
ing instruments that respond directly to ocean wave generated
electrcmagnetic noise are predominantly of the magnetic type
(measuring induced magrietic fields or their gradients), in this
study electric fieids zre z2l1lso under consideraticn. The purpose
cf ircludéing electric fields within the same aﬁélytical frame-
werk is twofold. First, the inclusion of the electric field
elucidates the physical mechanisms responsible for the inter-
action between the geomagnetic field and hydrodynamic phenomera
in the ocean. Secené, under certain conditions, the electric
fielad coﬁprises 1nfor§ation on the hydrodynamic'flewkfield rot
readily inferred from>magnetic—type measurements alone.

& brief outline of the material covered in this paper 1is
as follows:
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1.

The derivation of expressions for electromagnetic fields
induced by general fluid velocity fields, followed by_
an investigation of the validity of various approxima-
tions to the field equations. The discussion includes
a comparative evaluation of_approximationg‘employed in
past studies of magnetohydrodynamic phencmena (Chapters
I-III, together with Appendices B, C, and D).

Explicit expressions for components of induced magnetic
fielés urder the quasi-static approximation but arbi-
trary fluid velocity fields (Chapter IV).

Anaiytical results for électromagnetic fields induced
by lirear surface waves, and linear internali waves in

a heep ocean (Chapter V).

Explicit expressions and numerical results for ti=
spatial and temporal spectra of surface-wave- and
internal-wave-induced electromagnetic fielid corm:zonents
and their zradients observed from stationary (Chapter
V) and moving (Chapter VI) measurement plaiforms.

The analytical formulation for surface-wave-.nduced and

ternal-wave-induced electromagnetic field spectra reguires

several fundamental assumptions on hydrodynamic phenomena in
the ocean.

The required background material is presented in

Appendix A for surface waves and in Appendix E for internal
waves.

The major conclusions are:

e The quasi-static approximation to the electromagnetic

fields'is valid if the horizontal scale length of the
hydrodynamic flow fields does not exceed 1 km, and if

the characteristic frequency is on ‘the order of i Hz or
less.

‘This encompasses the usual range of hydrodynamic

phenomiena of interest in magnetic anomaly detection.
Under the quasi-static appreoximztion the eiectromagnetic
fields are given by relations déerived from elactrosta-
tics and magnetostatics, uhefein time enters only as a
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parameter. This approximation affords a .substantial
simplification and permits a unified treatment of elec-~
tromagnetic fields induced by ocean currents.

e Under quasi-static approximation internal waves induce
magnetic fields above the ocean surface, but no elec-
tric fields. On the other hand, surface waves induce.
both magnetic and electric fields. Moreover, the func-
tional forms of the temporal spectrum of any ccmponent
of the surface-wave-induced electric fiela and a surface-
wave-induced magnetic field gradient are identical.

This feature could be exploited in subtracting the
surface-wave~induced contribution from the internal

wave contribution in a moving gradiometer sensor. Thus,
since for sufficiently fast platform velocities the sur-
face wave and internal wave contributions to a measured
magnetic field gradient overlap (see, e.g., Fig. 1l6a,

p. 1i#3), their separatioh on the basls oi a total (spec-
tral) power measurement would not be possible. An elec-
tric field sensor would provide an independent measure-
ment of the surface wave contribution, which could be
subtracted from the total gradiometer output (e.g., by
employing a correlation technique).

¢ Numerical results based on the thecry developed for the
spectra of magnetic field gradients induced by surface
waves and internal waves indicate levels substantially
above the intrinsic instrument nolse limit of currently
available superconductive gradiometers. For example,
for an aircraft-mounted gradiometer typical computed
spectra are shown in Fig. 16a, p. 143. Over the fre-
quency range shown, the intrinsic nolse level of the
instrument would be essentially flat at 1073 (pT/m)zlﬁz
for a state-of-the-art device and at about 10'2 (pT/m)2/Hz
for an "average" gradicmeter sensor.
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Based on the theory developed herein, the temporai
spectra of the internal-wave-induced magnetic field
gradients observed from a uniformly translating meas- -
urement platform above the ocean surface are relatively
insensitive to the detailed structure of the thermo-
cline, provided observations are restricted to the fre-
quency range above the maximum Vaisdld frequency. 'This
result holds true only if the platform velocity exceeds
the maximum internal wave group velocity (typically a
fraction of a meter per second).

- Horizontal and vertical components <f the internal-wave-

irduced magnetic field components and gradients observed
from a geostationary measurement platform are completely
decorrelat=d whenever the internal wave wavenumber spec-
trum is isotropic. Conversely, the degree of correla-
tion between such components is a measure of the direc-
tionality of the internal wave wavenumber spect:rum.
Thus, correlation techniques applied to crtnogoral con-
ponents of the induced magnetic field gradient afford
the possibility of more accurate determination of inter-
ral wave spectrum directionality than currently pessible
fro= direct hydrodynamic measurements.

A single-axis magnetic field gradient sensor has also
modest intrinsic directional discrimination properties.
Depending on the relative orientatics of the sensor

axis and the geomagnetic field, the "gain" in detecting
a perfectly directional internzi wave field relative Lo
an isotrcplc background internal wave of equal power

car reaci about 6.8 dB.
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I. INTRODUCTION

This paper provides a comprehensive account of anzlytical
results for computing electromagnetic fields that are induced
by ocean sea wzter as a result of ils motion relative to the
geomagnetic field. There has been a sustalned interest in thnis
area over a number of years mainly due to the potential applica-
ticr. of this class cf phenomena as a diagnostic tool in ocean-
ography. Hore recently interest has been generated by probless
ir regnetic anormal: detection over an open ocean. 1In this class
of prohlems, ocean current generated magnetic fields and their
gradients constitute a2 source of noise.

The majority of past analytical studies dezl with a re-
rictive c¢lass of hydrodynamic flows. Thus, Longuet-Higginé et
. {13 treat electric fieids induced by steady motiorn of sea
water. The papers of Worburton and Cominiti [2] anda Weaver [3]
consider surface-wave-induced electrcrmagnetic fielés. Internal-
wave-induced magnetic fields for a two-iayer ccean mcdel are
trezted by Beal arnd Weaver [4], exploying the forrmulaztion for
irrotaticnzl velocity fielés in [3]. Sanford [5] treats elec-
trcmagnetic filelds generated by deep-sea tides. Employving the

tochastic Plerson-leumznn spectrum mcdel for wind-gererated
surface waves, Bergin {6] has presented calculations of average
ragnetic fields in3uced in 2 deep ccean. The most corprehensive
treatment of ocean-wave-induced electromagnetic fieids is due to
Podrey [7]. It encompasses surface waves and internal waves for
oceans with arbitrary horizontal stratificaticn.

oo

¥o forrulation applicabtle to general oceznic flow fiells
appears to have been published. Thus, aithough Podney's [71]




results encompass irrotationai flow, they are confined to the

special czse cf purely horlizontal vortlicity. In addition, in -
the existing literature, the treatments of the permissible
aprrcximaticns to the electromagnetic field equations are gen-

erally specialized to the particular flow field under discus-

sion, so that it is not aliways clear whether and under what
coriditions the approximations may be extended to encompass more
gererzl situations. Moreover, statements with regard to the
rznge of validity of various approximations are by no means con-
sistent. Por example, according to Sanford [5] the quasi-static L
arpreximation 1s valid if ouowﬂl < 1, where E is the ocean depth
ar.d 2 the korizontal scale length of the hydrcdynamic wave,
clearly implying that such an approximation breaks dowr for a
sufficliertly deep ocean. O©On the other hand, according to Podney
{7}, t¢he restriction on the validity of the quasi-static apprcxi-
matlon 1s of the form cuowlz << 1, which, in consequance, appears
aoolicable to an ocean of arbitrary depth. Other approximations
whose nature is not clarified are inmplicit in the existing for-
gticns. 4 case in point is the electric field above the

ocezrn surface Induced by surface waves. Thus, one finds that
! this electric field does not vanish even in the 1imit of zero
electric conductivity of the fluid [see, e.g., Eqg. (274) of
Podney [71]. Such a result is clearly inadmissible for it would
mean generation of an eiectric field By an Tether wind."

The primary rmotivation for the work presented herein was tc
censtruct theoretical models for temporal ané spatial spectra of
interral-wave arnd surface-wave-induced magnetic fielés and their
grecients, the results forming the basis for further study of
the effects of these noise sources on the sensitivity of instru-
ments employed for magnetic anomaly detection over a deep ocean.
However, because of the spparent lack of gernerality in, and the
3 perceived inconsistencies of, the formulaticns in the published
iiterature, it wezs deemed adviszble to reformulate the probler
by starting from first principrles, so as to erncompass arbitrary
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flow fields and, at the same time, carefully examine the quan-
titaetive significarce of the recuired approximations.

Tre formulation for electromagnetic fielcs induced by
arbitrary cceanic currents is develcred in Chzpters II, III, and
IV, in conjunction with Appendixes B, C, and D. It is shown by
sirmple arguments presented in Chapter III ané by a rigorous
analysis in Appendix D that the restricticn cn the quasi-static
aprrcximation is expressed by the inecuality A << 103f-1/2,
wherein A is the horizontal scale of the nydrodynamic disturbarnce
in meters and f the frecuency in Kz. This zgrees with the con-
dit2on given by Podney [7] but is in disagreement with that of
Sanforé [5]. Specifically, under the auasi-static approxima-
tion, the time-varying eiectromagnetic fields induced by a
veiocity fielc V(r,t) are idertical toc thcse obtained from the
soluticn of purely magnetostatic ard electrostatic problems ex-
cept that the time variable appears explicitly as & parameter
in the fcreing functions (velocity fielids). In anticipation of
this result the discussion ir Chapter IJ dezls exciusively with
electrostatics and magnetostatics. The electrostatic problen,
set up in its full generality, at once reveals the rezson for
the apparert lack cf dependence of the electiric field above the
ccezn surface on conductivity. It turns out that thkils lndepend-
ence is only approximate, since it is velid under the stipuia-
tion: that eoer/c << 1 sec, where €. is the dielectric constant
of the fluid. This approximation is fully justified for sea
water zndé, therefore, mzkes it perfectliy clear why the 1limiting
form for zero conductivity cf Podney's {71 Ec. 274 is not mean-

Tre connection with Podney's [7] formuliztion for the elec-
tric field in terms of the vector stream function is made in the
discussior: on pages 23-2¢, {specifically E¢. 59b), where is is
shown that a term must be added to Podney's {7] result when the
verticzl vorticity of the fluid is not identically zero. The

presence of this additional terxm rencéers the formulation for the
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mzgnetic field somewhzt more cumbersome, evern under the quasi-
static approximation. The explicit results for all the magretic
fielé corvonents, {both below and above the ocean surface) are
listed in Chepter IV. The formulze are given in two eguivalent
feras: as voiume integrals over the velccity fields, and in terms
of the Fourier transfores of the veloccity fielés. TLepending on
the manrer in which the veliccity fielés zre prescribed, one of
thke forns nmay be more convenient.

In Chapter ¥ the results zre srecialized to electromzgnetic
fields induced by internal waves and surface waves Under thne
quasi-static approximationr the formzulas agree ezactly with thkose
preserited by Peodney {7j. &Although the guasli-static approxima-
ticn within the stipulated restriction gives an adequate account
of the dominant field components, certzin chzracteristic physical
feztures of the structure of the induced electromagnetic fields
emerge only when a full wave sclution is considered. The de-
tailed zra2iysis is presented in Erpendix D, and the resuits are
discussed in Chapter V-D. One finds that, when viewed in 11
of transpert of electrozmagaetic esnergy above th¥ scearn surface,
internzi-wave-Induced fielés éiffer from surface-wave-1indaced
fields ir rzther furdamental respects. Thus, a unidirectionzl
internal wave gives risz to an eiectroragn-tic surface wave above
the ccean surface. Tre direction of propagatisn, the grour

velocity, and phase velocity of this electrcmagnetic surface
wzve are identical to those of the internal wave, This 2lectrc-
ragnetic surface wave is of the H-mode typce: thie vertical mag-
nétic field and tke electric field parallel to the ccean surface
aré orthogonal to the directicr of propagaticr, form the elec-
tromagretic pair whose product gives rise to a real ccmponent of
the Poynting vector in the direction of propagestion; the third
fieid component 1s a magnetic field that points in the direction
of propagatior. (hence, the designation E-mode). The direction
of real electromagnetic power flow is thus always perpendicular
to the wave crest of the internal wave. The situztion is funda-
mentzlly different for surface-wave-induced eisctromagnetic

¢

[

S e T TR
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fields. One finds that in this case one obtains two electrormag-
netic surface waves: an H-mode wave, anxl an E-mode wave, each
when taker 1in 1solation, carries electromagnetic power perpendic

ulais to the wave crest. The structure of the E-mode wave is
characterized by a vertical electric field, anéd a magnetic field
parailel to the cecean surface and perpendicular to the directicn
of propagation. The third component is that of the eleciric
field which points iIn the direction of propagation. Podney [7]
refers to the electric field associated with thils wave as an
€lectrcstatic fieid, a designation which is mislezding since
this field obviously depends on time and participates in ¢trans-
port of real-electromagnetic power. Since, in generzl, a
hydrodynamic surface wave induces both an H-mcde and an E-mode
wave, coupling betweenr the two electromagnetic wave types gives
rise to net electromagnetic power flow which is nearly along the
crest of the induclng surface wave.

The relationship among the fileld components for each of the
two electromagnetic surface waves turns out tc be identiczl to
that for classic electromagnetic slow surface waves. In partic-
uiar, they could be generated by z process of totzl internali re-
flection of an electroragretic plane wave impinging from within
a2 dielectric hzlf space on an alr dielectric boundary. Of

course, the value of the equivalent dielectric constant reguired
for a simulation of the low phase velocities of these waves
above the ocezn surface wouléd have to be extremely large (%107).

Chapter VI takes up the statistical forrulsticn for the
electrcmagnetic fMelds induced by internal waves and surface
waves. Uncer the assumption of temporal staticnarity znd spa-
tial hormogerneity in any horizontal plane, general formulas are
derived for the spectra of electric filelds, magnetic fields and
their gradients as these woulid be cbserved frox stationary piat-
forms above the ocean surface. Internal wave induced fields zre
treated in Chapter Vi-4, B. Under the quasi-static approxima-
tion, Internal waves induce only magnetic fields above the ocean
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surface. A complete characterization of the magnetic field and
gradient spectra requires knowledge of the ocean stratificztion
and the distribution of energy in mode wave number space. A
theoretical model for the spectra of deep-ocean internal waves
has been presented by Garrett anéd Munk [8]. We have founé, how-
ever, that their model is rot directly usable in computing spec-
tra of induceé magnetic fields. A different model, due to Milder
£9], which incorporates some features of the Garrett and ¥unk
model as z special case, was found more suitéble for our purpose.
In order to clarlfy the nomenclature employed in connection with
the spectral calculations, a detalled account of the theory of
linezr internal waves 1s presented in Appendix E, which includes
a corrzrison of the theories of Garrett and ¥unk and Milder. ?
The central assumption which we emrloy throughout in our calcu-
lation of spectra of internal waves is that the energy in mode
wave rnumber space of ambient internal waves is distribtuted in
proportion to the sguzre of the phase velocities of the indi-
vidual internal wave modes. FKe term this the Milder hypoth-
esis. Its conseguences are explored in detail in Appendix E,
in particular in regard to the simplification it introduces

in the expressions for “towed" internzl wave spectra. Milder's

e s e e
Al iR ..\LN‘? Y

=
Ei

b e e s B

nypothesis 1s incorporated into the formulation of internal-
wave-induced magnetic field and gradient spectrz. One impor-
tant consequsnce of the hypothesis is that the spatial spec-~

trz of the induced fields can be computed directly from the
knowledge of the VaisZli freguency profile without the need of
computing the elgenfunctions and the assoccilated dispersion rela-
tions. The results zre applied to compute the average values of
fields and gradients for 2 deep ocean. Although an exponentially
decreasing VdisZiZ frequency profile has been used in these cal-
culations, similar results can easily be obtained for arbitrary
profiles, since the formulas are expressed explicitly in terms
of the VAis¥lZ frequency. On the other hand, the computation of
temporal spectra requires a detailed knowledge of the internal
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wave eigenfunction. Numerical results have been obtained for
the spectra of magnetic field components and gradients for the
exponentially cdecreasing Va1s3l3 frequency profile. A1l data
Bave been presented in a normalized form so that numerical
values of the spectra can be obtained for arbitrary relative .
orientation of the geostatlionary coordinate system and the di-
rection of the geomagnetic fleid. Although these numerical re-
sults have been obtained specifically for an isotropic internal
wave spectrum, the general formulas are valid for arbitrary in-
ternal wave number directionality. The question of the feasl-
bility of discriminating between an isotrcpic and highly direc-
tional internal wave spectra by means of multiple axes magnetic
sensors is explored. In principle, such discrimination appears
possible elther on the basis of a spectral correlation mezsure-
rent, or by taking advantage of the intrinsic directionality of
the xagnetic field compconent or gradient sensor. Por example,
one finds that the intrinslc directionzl discrimination of a
single axis (horizontal-horizontal) gradient sensor is about
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Surface-wave-induced electromagnetic field spectra are
iscussed in Chapter VI-C,D,E. Numerical calculations are
based entirely on the Pierson-Neumann spectrum. Results for the
tctal r.m.s. magnetic fileld agree with those presented by Bergin
E 3 [€]. Numerical resuits are also obtained for magnetic fieléd
éf : fA ‘ gradierts 2s well as for the comporents of the Induced electric
] field.

e 2

One interesting result prcvideé by the anmalysis in Chapter
ViI-D,E is that the functionzl dependence on freguency of the
ragnetic field gradient spectrum and the electric fiel@ compo-
nent spectrum 1is identical. Since internal waves induce no
eiectric field abeve the ocean surface, the measurerment of the
mutuel spectral coherence function of the electric field and of
the ragretic field gradient could provide = means of identifying
the surface wave spectral contribution in the output of a

e L .
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magnetic field gradient sensor. A typlical level of the tectal
r.m.s. electric fielé at the ocean surface 1s con the order of )
60 pvolts/meter.

.
Shietihedy NAIGE A

Magnetic fleld spectra relative to a moving measurement
platform are discussed in Chapter VII. In Chapter VII-A numer-
ical results are presented for surface-wave-induced magnetic
fielé and gradient spectra as would be observed from a low-fly-
ing alrcraft above the ocean surface. The analytical results
for computing the temporal spectra of internai-wave-induced
magnetic fizlds and gradients are presented in Chapter VII-B.
For tow sﬁeeds much greater than the maximur internal wave group
velocities and temporal frequencles above thne maximum Vaisila
frequency, the formulae for internal-wave-induced magnetic fieid
and gradient spectra can be expressed in a particularly simpi=
form, viz., tke spectra are given explicitly in terms of the
Vdis3diZ freguency profile. Thus, although numerical results
have been obtalned only for the exponential profile, similar
calculations could easily have been carried out for any pre-
scribed Trofile,
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11, STATIC ELECTRIC AND MAGHETIC FIELDS INDYCED
BY STEADY FLOW OF CONDUCTING FLUID i
THROUSH A CONSTANT MAGNETIC FIELD ;

A. FIELD EQUATICGHS FOR A MOVING MEDIUM

In working toward the objective of establishing a general
set of explicit relationships between the hydrodynamic velocity

field in the ocean ané the electromagnetic fields induced by
the motion of the conducting sez water relative to the geo-
magnetic field, we shall start with the pureiy static situation,
i.e., we shall tempcrarily assume that the water moticn is

A Lo g

steady. The transition to time-varying fields engeidered by

the usu2lly unsteady flow will be made only iix Chapter III.

This aporozach is tzken primarily for didactic reasons. The
gpproximations to the electromzagnetic field eguations when spe-
cialize¢ Teo the constitutive parameters of sea wzater are more
rezdily zrrived at for the static case. Subseguently it will be
shown: that for the normzl range of temporal varliations encompassed

ul

¥ ocean wave phenomenza, and for characteristic spatial scaies
much less than 1 knm, the dominant components of the time vary-

ke

o
ing fields are given by the same expressions 2s are the static
fields provided one includes time as an additional parameter
in the source terms (hvdrodynamic velocity fields).

We shall assume throughout that the ocean surface is per-
fectly planar with the cartesian coordinate system oriented such
that y is the local vertical, y > 0 defining the region above the
ocean surface. In most of the discussion (the excertion being ,
kppendix D), the effects of the ocean bottom will be ignored, 5
since we are primarily interested in formulating probiems for




LRy

the case of a deep ocean. Thus, for the purpose of analysis, we
take - » < y < 0 as the region occupled by sea water. Ration- -
alized MKS units will be emplioyed throughout.

Let B, = earth's magnetic field which is taken as constant,
V the velocity of the fluid, and o,soer,uo the electromagnetic
constitutive parameters for the fluid at rest. The induced

electromagnetic fields are denoted by E,B.

By assumption, V is not an explicit function of time
(steady flow). Therefore, in the "laboratory" cocrdinate -~
system, with respect to which the fluid is moving, the in-
duced static fields E,3 must satisfy the followingz relations

OO —

Syl spuari s s i an ot oo o

, ‘.
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{103:
vXE=0, (2) -
;‘
3 "x(B+B) =
% = =o' - !
- A
=3 0 ;y>0 (<2) :
3] VxB-=
i MOIE + ¥ x (B, +Bl +up¥ + uVx (Px¥) ;y<0, %
where (2w} %
?
= - had Z
P=rey(e-1) [E+ ¥V x (B, +B}] . (2ec) )

ing gquantities on the right of (2) have the following physical
interpretation:

(1) olE + ¥V x (3, + B)]

16050, 8 oA et
Wrt] Leplmoars s

is the total conduction current in the fiuid, which is simpiy
6E' with
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the electric field relative to a coordinate system that is
momentarily at rest relative te the fiuid.

(1i) pV is the convection current that arises from the
spatial transfer of free electric charge by the fluid motion.

) (111) Vv x (P x V) is the dielectric polarizaticn induced
currenrt whose source is the electric field induced polariza-
tion charge transported by the fluid. This current is some-
times referred to as the Rontgen or Eichenwald current.

For y < 0, the constitutive relation between E and D is

D=

|t

CE*E

€o€p E + €,(e,-1) ¥V x (B, + B) . (3)

The "free" charge density p is given by p =V - D,

p=ece, Ve+E+eg(e.-1)7 < [V x (B, + B)] (4)

Ir general, in order to solve for E and B, Egs. (2-4) must be
surprlemented by the equations of flaid dynamics together with
a specification of boundary conditions for the particular
gecnetry. However, if the fluid velocity V of interest is
sufficiently low sc that the induced magnetic field is much
smaller than the applied field, i.e., [B] << |§0}, the magnetic
ields 3 + B entering on the right of (2), (3), and (4) mey
< replaced by the prescribed field go’ in which case the fluig
selocity V and the magnetic field ge enter only as prescribed
forcing functions. This effectively decouples the fluid mech-
anigcs problem from the electromagnetics problem, i.e., the two '
roblems can be hazndled independently. We then assume that
he hydrodynamic problem has been solved, yielding fluid velo-

27 flelds V(r) for y < 0. The electromagnetic field equations
ncw simplify to )
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VxE=0 (5) T

0;y>0 (6d)

pO(E+ VU xB) +upV+u¥Vx (Ex¥);5<0, (6b_)

g=e°(e.r-1) (E+V=xB);y<0, (6c)
D=¢e,E+ eo(er-l)zxgo;y<0, (64) .
p=e°el:v-§+eo(er-1)V-(j{xgo);y<9. {6e)

Only V is prescribed for y < 3. The charge density p (if any) N :

must therefore be uniquely determined from V. We will now
obtzin 2 connecting relation between V and p. Upon taking the
divergence of both sides of Eg. (6b), we obtain

0 U[V-§+V-(gx_B_°)]+Vopg

=0V-§+0(Vx\_f)o§o+pV-E+X-Vp.

We denote by » the fiuid vorticity,

vVxV=guw (72)
andg let
E=w B . (7v)

Also, tae fluid will be treated as incompressible (V - ¥V = 0) .
One then finds

V-E=-E-2(-Vo) .

On the other hand, from Eq. (6e), one has

12
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p=rt€k.VE+ e (e-1)§ . (8)

After eliminating V - £ from the two preceding relations, one
obtains

€ofr

(V-Vp)+p=-E;y<0 , (9)

o

which is a first-order differential equaticn for p. Let

§ = Eoer
o
and (10)
= - £ .
e €,

The guantity 6 has the physical significance cof a time constant
and is referred to as the relaxation time of the medium. The
differential equation for f reads

£f+8(V-v)=¢ ,
or
[1+6(V-WIf=¢.

If
[6(v - vg) | <1 ,

ané we aiso assume that £ possesses partial derivatives of all
orders with respect to x, y, 2z, the solution for f may be ex-
pancéed in the Taylor series as follows.%¥

£ = Z (<1)" & - £ .
n=0

Conseguently, the iree charge is giver by

K3

The assumption that § possesses derivatives of all orders is
Eade here for convenience only, and is not at all necessary

ior tne vailGity of the final approximation as given by Eg. (i5).
Fron elementary theory of first-order partial differential
equgticns, it czn be shown that the ~harge density p is given
expilcitly and exactly by the following expression (continued)
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0;y>0,
p= . nn n is..v
-—eoz (-1) 6§ (V- V) E;3<0. (11)
n=0
Returning now to (8) and solving for ¥ - E, we obtain
2 ()
E veE-= - E;¥y< 0,
= €.Ep €. 2
5‘ Substituting for p from (11) yields -
~ n n n e -1
JeE=-XY (D & @-V e—(’; )z .
=0
whichk is equivalent to ’
(-]
3 n n n
v‘§=-goe—z (-<i) &6 (V-V) g . (12)
T n=1
By virtue of (5) one may set
E ==V ¢ Y
and {i2) becomes the Pcisson eguation for the scalar potential:
g ;y>0
-«
V2y = 1 n n n
‘§+-e—z (<1) 8§ (¥-V) &;35<0.Q13)
T'n=1
{(continued)
) t/8
p = p(())e'"‘b”/6 - sog(t) + 3 eoe-tlé f E'(ss) e as
0
where t is z pararmeter measured along the fluld particle trajec-
tory and E' = dg/dt. ¥From this result follows irmediately thav R
for any t > 0, 1im p + —¢ £ as § + 9, provided oniy that lg*] is '
unifcrniy bounded. -
14
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; Taus, given a fluid velocity field V, (13) may be solved for
. ¢, subject to the appropriate set of boundary conditions.
Once the electrostatic field has been determined, the driving
function (i.e., the equivalent current) in the generalized
Arpere's law statereat (€t) can be expressec¢ completely in
terms of known quantities. Thus we have

[y,

ke

Pt

3 VxB=uJ,> (142) ;
=3 }
7 A n n n ;

2 = - -1} -V
d J,=o(E+V¥xB)-¢ ¥ z (-1} & (¥ ). & :
3 n=0 2
. !

- T o PN 2 1j

+e (e -1) Vx[ExY-V(¥-B)+BV] . (14b) %
1

Since £ depends on 1, the source terms giving rise to the scalar
potential in (13) as well as the equivalent current in Amrere’s
law (1%) are nonlinear functions of V. Altkough such nonlinear
dependence on ¥V may well be of great interest for pocrily conduct-
ing nedia, they are of no consequence for sez wzter where 3§ is ‘
very small. Thus, since € = 1/36% x 10-9, 8 = g e, /0 Is small ;
for all but good insularors. In particular, for sea water, i
o213 £.% 80 so that €,£,/0 1s certainly 2 small quantity. Thus,
in the series expansion for p in (11) we need rot bother with
terms for n > 9, and write, to a good approximation,

e A et ki S D o
'

0; y>¢C (152)
p = !

€835 <0 . (15b)
For the magnetic field, this approximation zmounts to dropping
] 211 terss of order €, on the right of Ee. (15b). We then have
x 3 - - _
% B = p,K, and
% 't 15
i i |
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A —, . e s e, =, R gy . l,i-'
0;y>G Y (163)

VxEH=
o(-vs + V x go) s ¥ < 0 . (16b)

The scalar poterntial is given by
0;y>0
v2¢ = (17)
le-B=ts5y<o0.

B. THE ELECTROSTATIC FIELD

We shall first obtain formulas for the electrostatic field.
It must be borne in mind, however, that all subsequent results
based on (17) need not apply for arbitrary o, in particular for
6 = C. Eguation (17} 1s indeed scmewhat peculiar ir that no-
where does there appear a dependence on the medium paraneters.
Our guide as to boundary condstions must be Maxwell eguaticns
(5} ané (3i6). The first boundary condition is dictated oy (3),
which requires that ¢ be continuous at y=0, 1i.e.,

¢; = ¢i (13)
,Y-O- I >

=

e
The second boundary conéition follgcws from {156), which demands

continuity of the normal component of the total conduction cur-
rent o(E + V x B,) at ¥ = 0. Since the normal component of

. - + .
this current is identically zero at y = 0 , ve =ust al1so have

_% , — .
3y b VaBox - vxaoz = 0 aty=0 . (19)
1€
B e e R T
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In solving (17) subject to (1) an¢ (19), it is instructive tc
consider separately rotational and irrotationzl flow. For the
latter w = 0, so that for y < 0, {17) reduces to the Laplace
equation with 2 prescribed normal derivative cf the potential
at v = 0. The soiution for ¢ for y < 0 is easily shown to be

. 1
¢(Z,;¢',Z) F —==

f f v, (x7,0,27) By, ~ Vx(x',ﬁ,z')

I, s~ -
Y (=292 + (2-2')2 ¢+ §F (25

>

LY

Eguation {290) also satisfies the Laplace squation for v > 0. Hore-
over, ¢ as given by (20) is continuous 2t y = 0. [Boundary
condition (16).] Consecuently, (26G) is the compiete solution

v2134 for -» < y < =, Tt mzy be shown Girectiy fronm (2C) that

< 3'\'— - -
lim 3w v_(x,9,2) Box ~ ¥L(x,C,2) Byy (21)
¥y=+2Q

which is Jjust the prascribsd boundary condition (19). On ths other
hand, wren the 1imit is appreachsd frem the positive y direction,

iim %% -+ - Vzix,o,z) Boz + ”T(z,e,z) Boz . (22)
vy~ ot

wnich is the negative of Eg. (21). Hence %; is discontinucus
across ¥ = 0 by twice the value prascribed iy* Eg. (319).

¥

Tnis can ziso be Jeducedé by a2 symmetry argument: ¢ is an

even function of ¥, efore %% must be 0dd. Since %%

is also Giscortinuous, half of the jump =ust ocecur f{for

¥ = 0 and@ haif for y = 0F
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With the aid of Egs. (21} and (22) we czr ~ciapute the totzl sur-
face charge at the interface:

ag i
p_ = ~€ + - D _ =
s o3y v=0 ¥l - g
= 250[."2{.’:3{]32) BOI - “Ix(xgoaz) EOZ} . (23)

Note that ¢, does not enter into the expression for charge. This
is a consequence of the approximation for the highly conducting
wedium (Ec. 15).

Thus, for pureiy irrotationzl fiows, the electrostatic fieid
above and below the ocean surface depends only on the tangential
components of velocity a2t the surface. In this sense, it can be
considered a pure surface shenomenon. One other point is worth
mentioning: formula (20) for the petential does not depend on
conductivity or any other parameter of the medium. From this,
cne shouldé not conclude that an elesctric fieid will be 3irnduced
by @ flow in & mediur with zero conductivity. For 25 has been
pcinted cut in the discussion preceding (17), in the 1limit of low
conductivity (17) no longer applies since in that case ncnlinear
effects associated with the convectior current begin to dominate.

Next we consicder the case of rotztional flow. Uniike 1in
the case of pure potential flow, the right side of (17) will
not te zero. %The formzal solution for ¢ will now contain
a volume integral of the product of £ 2nd a2 suitable Green's
function. We shall denote this contribution to the potential by
$. From the linearity of the rrobler, it follows that we can
superpose the soluticn (20) ané the solution to the inhomoge-
nieous problen with the boundary condtion (18) together with the
adéitional condition

18
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EA .
3% = 0 aty=0 . (245

For y < 0 we then have an lnhomogeneous XKeumann problem, SO tnat

0 ® ©
$ (x,y,2) ‘f dy'f d?.'f az’ Gn(x,y,z;x',y',z') E(I',Y',Z') 5y <A@
—_ - -~ .

{25)

where Gq is the Neumann Green's function given %y
b3

b Y

G (x:¥,25%%,5%,2") = G {x,¥,25x",¥%,2") + 6 (x,¥,25%x",~y",2") {26}

where

G, (%,5,23%",5%,2") = ({x-x"3? + (y-y")% + f2-2")%) . (27}

(Note that in (26) y* and y are less than zero.) To ottain ¢ in
the region 7 > 0, we utiiize the fact thzt & must be ceatinuocus at

y = 0. Clearly, fory > 90

(- -} - -]
${x,¥,2) = -2/ dy'[ dx'[ dz® 6 (x,¥,23%',¥',2") E(x',¥',2") ,
-0 - —O;

A B it B Bkch v s

(28)

for it reduces to (25) at y = 0 and satisfies the Laplace eguation
for v > 0.

.

19

L ed\ b ra et




|
i
i
k
4
E
5

Ly
Tt

()
s
Loy
it

b

The complete solution for the scalar potential is then given by
the suz of (20) and £28) or (25). Thus, fory > 0 ,

¢(x,7,2) = 2/ dx'[dz' Co(x>¥,25x",0,2") [V, (x',0,2') B _
o Zew
-V (x',0,z *) B ]
] - ™
-2/dy'/ dz'j dz' G, (x,¥,2;x",y’,2") w(x',y',2') - B ,
- - h (23)
wnile for y < O .
® ©
$(x,¥,2) = Zd/de' az® G {x,¥,z;x",0,2") [V (x",0,2") By,
. ) ) -V (x*,0,2") B ]
—/d:"'/ dx'] dz® [8,(x,¥,25x",y",2") + 6_(x,y,23%";-y',2')]
o -= to

- [(x',¥",2') - B ] . (30)

Equations (29) and (30} are valid generaliy for steady flows, i.e.,
the fiow can beepartly rotational and partly irrotational. For
purely irrotational fiow the volume contributions vanish, ard one
again obtains {20). It is perhaps worth rerzrking that at this
point no explicit zssumptions have been made with regaré to bound-
ary conditions to be satisfied by the fluid velocity fields. Of
Tourse, the assumption of a perfectly planar surface implies that

the norma2l component of the fiuid velocity rmust vanish immediately

20



below the surface.¥® However, thus far we made use of the planar
tura of the surface only in the electrostatic part of the

problem.

Yext we consider the special case of pure rotational flow -
in which the normal compcnent of fluid velocity vanishes at the
ocean surface.¥* Quite generally, as long as we are dealing
with incompressible fluids, we can express the velocity gener-
ated by a distribution of vorticity as the curl of a hydrodynamic
vector potential § (vector stream function).

Thus, with
v=Vxy (31) ;

the vorticity w is given by

w=VxVxyg . (32}
Since the last is equivalent to
i Vg - UVep = —0 (33)

—
This is, of course, not strictly compatible witih surface

wave phenomenza in the ocean where a vertical velocity of
the surface is necessary to sustain any kind of surface
; - wave activity. For smali amplitude (1inear) surface waves,
1 this vertical velocity is treated as a small rerturbation
of an otherwise planar surface in which case this surface
may also be treated as plzanar in the electromagnetic problemn.

This Poundary condition is usually zdopted in modeling in-
ternzi wave phenomena.

} t £
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we have a differential equation for y with the vorticity func-

tion playing the role of a source. Since

V-w=0 (34)

which gives for (33)

vy (36)

L3
L}
|

|8

It is important to keep in mind that ™arbitrary"™ vector vor-
ticity sources may not be prescribed on the right of (36) but
only those havirng zero divergence {(34). OCtherwise the solu-
tion of (36) for Y will not satisfy (35). We now assume that
the vertical motion of the interface can be neglected so that
the boundary condition on V is

Vy =Q0at y= 0. (37)

Using (37) in conjunction with (31) and (35) leads to two bound-.
ary cornditions on y at y = 0. Thus, Eq. (31) demands that the

vertical curl of the velcecity be zero, which can be satisfied
cnly if

¥, = ¥, = constant at y = 0 . (38a)

Since the value of the velocity field as computed from (31) is
unaffected by the addition of a constant to the stream function,
we may set this constasmt to zero. The gauge condition, Eq. (35)
then yields

v

TE¥-= Daty=0. (38b)

With the aid of (36) and (38) the general equations (29) and

(30) can be put into a form which involves only volume inte-

grals. Instead of doing this directly, we will follow 2

procecure which closely parallels that found in the published
22
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literature [7]. This involves combining the hydrodynamic
equaticn (36) with the equation for the electrostatic potential

Eq. (17):

V2B, - ¥ +4) =0 ;y<0- (39)

If we now set

¢'" =B, v +¢ , (40)

¢' satisfies the Lapliace equation

V' =0 ; w<y<w , (41)

and the solution for ¢ is

¢’ 5 y>0 > (42a)

-§c-_"2 5 y<0 . {42v)

This form is employed in [7] where ¢' 1s set equal to

Zero so that the eiectrostatic field above the ocean surface

is identically zero. 2s wiil be shown in the seguel ¢é' = 0 is
compatible only with a rotaticnal fiow with zero vertical com-
porent of vorticity. We shall elaborate on this point after we
have set up a generai solution for ¢'. The soluticn of (41) is
completely determined by the boundary corditions 2t ¥y = 0. PFrom
{19} and (40) one finds for y=0

-23
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¥y ay ay By ~®2 =V, By ~ Yy Bz - (43)

From the definition of the stream function (31)

9 ) oy
v - v, _ vy v = by oW ]
x . 33 39z z ox oy

Substituting for V_and V, in (43) and taking zccount of (38b)
one obtains

o —— ——_r 2 E

3 3

= y y . =
3 " Boxax t Boz3 2 ¥y=0. (44)

The second boundary condition on ¢' follows from (3i8) and (42):

¢' - ¢ =-B _ ¥ (45)

where we have taken account of (38a).

Although (4L} and (%5) suffice to write down the complete solu-
tion for ¢', we prefer to decompose ¢' into a2 sum of three
parts, each erising from one of the three components of go, and
then add the result. In this manner the simplifications iIn the
final formulae that arise from a particular orientation of §o
and the vorticity function are best brought iz evidence.

Accordingly, we dencte by ¢;, ¢§, ¢é the potential functions
due to the x, y, z components of §o’

24
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respectively, ané write

or= 9l + oL + 8, - (46)

.~

First, let B, = Boy = 0. Then from (45) ¢, is continuous at
y = 0 while its normal derivative at y =07 is Boz 5~ The
potential ¢; is then given by a formula similar to (20), viz.,

B ® 3y, (x",0,2")
é'z(x,y,z) = 2—2—% [ d)!"j dz" ——z— [(x—-x")z
1
2

+ (z-z™)? + y21% | (47)

SHRA e Ao e e eom e e x

which holds for -» < y < @ by virtue of the continuity of ¢' at
y = 0. ¥We would like to express the final result in terms of
the volume distribution of the y component of vorticity. This

can be done by first scliving for wy in (36) and substituting
Iy
327 in the integrand of (47). By virtue of the boundary

condition (38b) the solution for $y in terms of w, rewds

90 . -
¥, (x",¥y",2") = [ dy'j dx'[ dz? GH(I“,N",Z";I',Y',I')
o . -] -

wy(x‘,y‘,z‘) (438)

et

for

where GN is the Neumann-type Green's function defined in (26)
and y" < C. After (48) is differentiated with respect to 2"

and substituted in (47) the 1ntegration'with respect to x" and
2" can be carried out, leaving a three-~fold integral over the
source coordinates x',y',z'. While the computation Is straight-

forward, it is somewhat iengthy and has therefore been

25
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relegated to Appendix B. From Eqs. (B-1) and (B-11) the resuit T
is
0 ® ©
$,(x,¥,2) = Eaz[ av' | éx'f dz’ Kz(x,y,Z;X',:1',2')wy(x’,y',z')
(k9)-
where ‘1
et Syt
KZ(Isy,zrx': ',2') = - 1 (z-27) 1- ]y+y l _——
2rip-o'i \lp-p"| 4!3’2’12*(3’*3?2 -
(50)
end
lo-p'} = 4(1-:')2 + (2-2')?
and where the (-} and (+) signs refer to ¥ > 0 and vy <0,
respectively.
3 = = H M S
Hext we set oy Boz 0 =2=nd conmjute ¢x. Fro? (§5) we
again find that ¢J’( is ccntinuous while at y = 0
LM Y,
F = BOI. B_XL . Hernce
Boxf . o .. 20,(x",0,2") ] o
T = n f (x—x1}
¢x{x,y,z) Sp fd): azv 3% {(x—x}
-0 P4 - 4 3
2 -1
+ (z-z") +y21 2, (51)
(14
26 ‘
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Again *y is given by (48), and tha final expression for ¢; in

terms of the vorticity function may be written as in (49):

(4] © ©
- ¢ (¥,2,2) = Boxf dy'fdx‘ ftiZ' K (x:9,25%7,¥%,27) w,(x*,¥%,2%).
- - - -0

(52}

The expression for Kx may be written down from (5G) by simply
interchanging €-z')with (x-x*). Thus, one obtains

Xx(x,y,Z;X',Y':z') = _ 1 lx X )(1 - Iy"y J 4 ).
2n]p-p | \lp-p' | {lo-p"% (yey*)?
(53)

ox 0oz

For tne third and final case, viz., B _ =B _ = 0 , we have
following boundary conditions on ¢;° From (4i)

04-
]

6 at y=0 (54)

¥nile from (45) ¢; is 3discontinuocus across y = 0 by the

[y

amount ¥

s | - & = -B ¥ _(x.0,z}. (55)
5

¥Tnis discontinuity produces no anomalies (infinite
voltage, etc.,) since by virtue -of (42) the true
electrostatic potential is continucus at y = 0 .
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This case is therefore distinctly Cifferent from the two
previous cases. First, since we are deaiing with the homoge-
neous laplsce equaticn, (54) demands that for y < O ¢; =0
{(br a constant, "which we are at literty to set eanal to zero,
since we are not interested in the absolute value of the po-

tential). For y > 0, we obtain ¢§, subiect to the boundary con-
=B 9 (x,0,2).

X
ftion oy Iy:{)* oy ¥y

problen 1is

The solution to this standard

¢ (x,¥,2) = ZBoyf dx"f daz" ;% G, {x,¥,23x7,0,2") 9,(x",0,27).

Ag2in, we employ f48) and write the final result

0 <o
2t - » ~
4.2 = 3 fay [

where, as shown in #ppendix B, Eg. (3-17),

('21—!!1(1-1')2 3 (y-¥")? + (z-27)2
Ky(x:ysz;z',y',z')-‘-l
o

¥

<

0

(56)

@
[dz' K {x,¥,23%",¥7,2") o (x7,¥,27)
v -

an

(57

Y

{58)

We have defined £ = 0 for ¥y < 0 so that formula {57)

autcmaticaily encompasses ¥ < 0 where ¢' vanishes.

If we ée-

finz a vector K{x,¥,z;x',¥',2") with components given by (39),

in (42) as follows

28

(53) and (58), we can write the true electrostatic potential

2
lJ;y>0




¢(x,y,2) =

9 = o
fdy'fdx'fdz'%‘K(x,yz,»ﬁ'Z)w(xy 'Y)s5y>9,
® (592}

$(x,¥,2) =
f ay* j ax* fdz B * K(x,y,2:x',¥y",2")w (>, ,¥y',z! )-B -y {x,¥,2}
- 5 ¥<0 . (59p)

Equation {59) gives the electrostatic potential above and
below the ocean surface when the flow is rotziioral znd
for which the normal component of fluid veiocity vanishes at
the ocean surface. We observe that unlike in the case of po-
tential flow, Eq. (20), the generation of electric fields by
pure rotational flow is a "volume phenomenon®, i.e., ¢ depends
on the distripbution c¢f the vector vcrticity function every-
where below the surface. Indeed, (59) is nothing but the trans-
formed general Eqs. (29)(3G) specializeé to pure rotational
flow. Evidently for pure rotationzl flow, the surface terms
can be expressed as integrals over the vorticity function.
Indeed, all that was done in arriving at (5G6) was to cast these
"volume™ contributions into a specizl form. There are certain
features that are obscured by (20), but are brought out explic-
itly by (5%). For cne, we notice that the electrostatic
potential above the ocean surface arises entirely fror the
vertical component of vorticity. Thus, unless there is a non-
zerc vertical vortieity component, that portion of the electro-
static field that is induced by reotationai flow vanishes
identically abtove the ocean surface. In this case the electro-
static potential below the surface is just the negative of the
scalar product of the earth's magnetic field and the vector
strear: function.

29
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Consider now rotational flow in which the vorticity

frnetion is purely horizontal (in which case Eq. (59) yields no
electrostatic

field above the ocean surface). We first show
that in ihis case it is not possible to constru

function that is unidirectional unless it
tion 2long this direction. Por without
m2y assume this direction to be the z-gi

ct a vorticity
€xhibits nc varia-
less of génerality we
rection and we have
© =2, uv,. Since, by definition, V.- w=0 [this condition

ol
®2s used in érriving at Eg. (59)1, 7;? = 0, wxhien clearly shows
&

Consequently, 2 single unidimec.

component is consistent cnly with a two-
imensicral probierm.

that W, cannot vary with z.
tionai vorticity
d

¥e now consider an important Special quasi-tw

wo-dimensional
problem. ¥e S.ppose a pfurely rotational fiow problem in which
there ars

only two nonzero 7elocity componentis Vi(x,y,z),
J=i0city
?V(z,y,z). The components of vorticity are

IV 3?&
©z = 3}1 T 3y (602)
3V
x
w:v’ = T s (60b)
av
w = - Y
x 3z °

velocity fields with the longitudinal
=} direction is Small, ther

(
flow field would be expecteq
strictly two-dimensional flow

Wy and ©. will be small, and the
to resemble that obtained for a
pattern in whieh Wy T = 0.
=ay be adeguate to describe the
arpic Protlem, the szme cannot be

£1thcugh such an aDproximation
ma2jor feztures of the hyérodyn
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sai@ with regard to the computation of the electrostatic poten-
tial. For the potential depends on the integral involving 325,
teken cver the whole fluid volume. In particular, the in- 9z
tegration in Eg. (59) extends over the entire length (z-direc—
tion) of the flow field, so that locally small longitudinzl
gradients of the horizontal velceity Go no. necessarily imply

that their integrated effects will also be small.

if a purely horizontal vorticity function is not unidirec-

ticnal, then the two horizontal components wes 0, nust satisfy
w amz - o
ax 4z 3

i.e., the transverse divergence of w vanishes. This condition is
actually satisfied by linear internal waves at freguencies sub-
stantially above the inertial frequency (i.e., in the absence of
Corioliis effects). Internal waves under these circumstances will
not irduce any electric field above the ocean surface. By con-
trast, surface waves necessarily give rise to electric fields

a2bove the ccean surface. The corresponding electrostatic¥® po-
tential being given by (20).

C. THE MAGNETOSTATIC FIELD

Having deternmined the electrostatic fields, the magneto-
static fieids are determined from (16) subject to the continuity
of tangential components of H across the interface y = 0. Also,
since the magnetic properties of z2ir and sea water are essenti-
ally identical, the normal component of H at y = 0 must be
cenitlinuous as well. We selve (16) for H by introducing the
Lorentz vector putential A,

_ |

E 3
Here we are jumping ahead of the story since we have thus
far considered only the purely static case.
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p H= Vx A (61) L
and choose the Coulomdb gauge
V-£=0. (62) ]
Substituting for H in terms of A in Eq. (16) and employing the
identity VxVx = VV-—92 we obtain
0O;y>0,
via =
-ouo(-‘7¢ +Vx go) 3 y<0 . (63)
From (16), (61), and (62) follows that the boundary condi-
tions on © are continuity of eack coxponent and its normal
derivative. This would also be the case, for example, if the
equivaient current density ge,
Jdo=o(-v¢ +¥xB), (65)

were prescribed in free space. Since, corecver, we constructed
cur scalar potent§?1 such as to ensure that V-J_ = U everyshere,
{including at the boundary) the probler posedé in (63) can in-

deed be solved with the aid of the free-srace Green's function.
Hernce,

‘_A_(I,y,Z) = uo fdytj dztf dx? J-e(xl,yl’zl) GO(I,F,Z;I',y"z') -

{65)




3
A ¢
3
]
-
-
ot
Rt
B3

» oy 2
A

ol el Sl

PE O
’

The vector potential A arises from two partial contributlcms:
the @irect sourze contribmtion from the Lorentz force term

(66)

?

i(s) = o(VxB)

and the cortribution from the conduction current whcse source
is the static electric field -V¢ below the ocean surface.
Evidently, since ¢ as given by Eqg. (30) involves a volume
integral, the partial contribution to A from -oV¢ in {65) re-
quires two-volume integrals over the fluid velocity components.
This two-foid integration can be reduced to a single integral
and the total vector potential can then be expressed as a
single integral involving only ng) in (66). ¢t such a
representation shkould be possible is evident from the fact
that o(V x §0) is the primary source (excitation) of the el-
ectromagnetic fields. However, the Green's function kxernel
entering into such a representation of 34 will no loxnger be GO
as in (65}.

Instead of carrying out the rather cumberscrme steps of
reducing the double-volume iIntegral involving the electro-
static potential contribution to a singie-volume integral,
we shzll obtzin the final ra=sult by an a2lternate route.

Clearly. the distinction between the representation (65)
and any alternate one is in the choice of the gzauge condition.
For example, (65} is a conseguence of adhering to the Coulomd
gauge, Eg. (€62). Alternatively, we could have emplioyed the

Lorentz gauge:

Voéz'
I_uoo¢ ;y( 0. (67)

§ite..

1 19
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The detailed derivation of the fields for this choice of gauge
is presented in Appendix C.

£

.
N
K3 Yl ¥ ‘v

As a ccnsequence of this choice, the vector pctantial A
now satisfies

. ,
M4 y
NGULA Mty T

33 s y<0 . (68)

The source of the vector potential now comprises only the di-
rect Lorentz forcing term QFS) = o(¥ x BO), and the solution
for & will now involve only a single integral over uog‘s)
welghted with the appropriate Green': function. However,
this Green's function is no longer G, as in (65); but a more
complicated Tensor quantity. This arises from the fact that
the boundary conditions on & in (63) at the planar interface
are no longer the scme as.those for a vector potential gener-

At A

!

§
E

o

ted by a2 prescribed current distribution in free space. While
the tangential components (AX,AZ) and their normal derlvatives
are still continuous at y = ¢ (just as in (65)), the normal
derivative of A is discontinuous at the interface. The

¥
specific expressicn for A is

FA R A o
M’("

Lo oo
¢ gaedind s it e

8,
il

n ©
a@ = u, [ oy ff et grrn 3@y (59)

where G(r,r') is the Tensor Green's function with the matrix
representation

34
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G, 0 0
. }
Er.r*) = |6, Gy &, - (70 .
| O 0 g,

where G ° is again the free space Green's function. The other ron-
zero compcnents of G are ‘

7 (x=x*) [4 (p-p*)? + (.v?y')z—iﬁy'!]
Gyy(r,r') = - = - s (7T1a)

4x Ig—g'l’ J |2'£'|2 + (yiy')?

B mesgennn g ez e

.
g oty y ’ R R T WP I I
e R TR T e

1 (z-z') [{ (p-p')? + (ny’)’-ly;y‘l]
Gop(zor’) = - = > (T1b)
3 le-2'1? o lep'|? + (y3y")?
0;5v>0
ny(z,a‘) =

o (x3¥525%",¥",2") —G (x,¥,2;x",-y',2'); y< C ,

(71c)

where the minus and plus sign in (7ia,b) pertains to observa-
tion points y > 0 and y < 0, respectively.

From (70) it is evident that the two horizontal components
of A are the same as those that would be given by (65) were the




electric fieid contribution to ge to be omitted. Consequently,

= ""“~ e B & W.m,wm}a':s- ey

PN

Ay and Az (and hence the vertical compcnent of the induced. mzg-
netic field) are not affected by the electric current component
generated directly by the electric field; the only component of
A that dGepenés on. the subsurface electric field is Ay {which

contributes only to the horizontal component of the induced mag-

netic field).

Because of the use of the Lorentz gauge, the electric fieid

can be obtained explicitly in terms of A. Thus, the elactro-

static potential is given by

¢(x,y,2) =

=
Q

o
9 1
- ﬂ da?p' — Go(st:Z;x"osz') V-2

]
Q

()

0; y >0,
yl:O .

(72) -

where V' is the gradient cperator with respect to (x',y',z').

In this form the expression for the scalar potential appears
substantially more complicated than the results obtained with
the aid of a direct solution of the Poisscn equaticn, viz.,

Egs. (29) and (3C).

Thus, while use of the Lorentz gauge leads
more directly to the final expressions for the magnetic field

-
than the use of the Cculomb gauge, the rclative difficulty is -
reversed for the electric field. It may be shown that Eq.

(72} reduces, as indecd it must, to the expressions for ¢ given

in (29) and (30). These equations, together with the expressions c

for the vector potential A, Eqs. (69-71), provide a complete set
-of relations for determining the electrostatic and magnetostatic
fields generated by steady fiow.
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111. ELECTROMAGNETIC FIELDS INDUCED
BY TIME-DEPENDENT OCEAN CURRENTS

When the fluid velocity depends explicitly on time {non-
steadv flow) the electromagnetic fields are no longer static,
and Eq. (5) and Eq. (16) must te rsplaced by

o
[

where we have neglected both the displacement current and the

convection current below the ocean surface. For time scales
of 1 sec or longer

VxE=-~u, 5 » : {732)
!
3 VXESy - (73b)
3 fod® V>0
£

X

i | . 2E| !
o |°osr é'fi« ‘Li , (74)

SO that the displacement current below the ocean surface can
be safely neglected. as was demonstrated in the preceding sec-
tion, the convection current is of the order E x 0{¢,), and,
therefore also quite negligible by comparison with oE. If, in
addition, we are only interested in the dominant field compo-
neats, then, above the ocean surface, the displacement current

.
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be included.
and the results are employed in Chapter V-D in the discussicn
of electromagnetic power transport above the ocean surface.

term and the effects of magnetic inducztion can also be neglected#®.
On the other hand in order to understand the process of electro-
ragnetic power transfer above the ocean surface, these terms must

An exact formulation is presented in ippendix D,

With the displacenmer:i current and magnetic induction terms

omitted fer v > 0, we have

5 ¥y<90,

y>0.

x
Formally, this may be motivated as follows: Since V - H=0
everywhers, then above the ocean surface,H satisfies the wave

equation
9%H
gL 2 =
vg'cz‘S‘Tt >

~%
¢ = (ugey) being the speed of light in vacuo. The soliution
for H can be written as a Fourier integral with respect to

the transverse coordinates, viz.,

. i -ikep + iwt
H(rj = ﬂ d’c e Hix,y) ,

-0

where H satisfies

dzﬂ ‘_"i_ 2 =
oh 4 (4 ) u-o .

Clearly, 1f~§ << k (spatial scales of hydrcdynamic disturb-
ances much shorter than the electromagnetic wavelength), cne
can set ¢ + », or, which is the same thing, €, 0, u, > 0.
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B = e
o(E+¥VxB) ;y<0, (76a}
VxHhH-=
0 3 ¥y>0.

-(76b)

We now exzmine the quantitative significance of the magnetic

induction term below the ocean surface.

As usual. we express

the solution of Egs. (75a) ané (76a} in terms of potentials A

and %:

With aid of Egs. (17) and (77b) we finé

0 ;y>0
v? 3 = ’
¢ +3x (V-4 =
E 5y<0

Upon combining Egs. (772)(77b) and (76a), we have

3A
2 - —_— = . - : -
Vs B0 3% vv-a + uoaV¢ uoo(! x §o) y<@O0

2

We now choose the Lorentz gauge [Eg. {67)] to obtain

These eguations differ in form from their electrostatic and

39

(73)

(8¢y

(31)




magnetostatic counterparts only in the presence of terms ¥,0 %% - -

and U0 %%: and in the fact that the electraic field as given

by Eq. (77t) contains the time varying additive term - %%:.

These terms can be neglected for hydrodynamiec effects with

norizontal spatial wave numbers x that are much greater than

Jﬁ;EE (w - the temporal radian freguency). This is readily

demonstrated by writing the sciutions of Egs. (80) and (81) as

Pourier integ.als with respect to the transverse {(x,z) zc- :
ordinates and time. FPFor example, the solutien cf Egq. (81) ,;

can aiways be written in the form

®© «©
1wt -ixk-p
2t = fe affe a(y,c,0) a% (82) _
-00 —~oh 1.
where a satisfies
_d_z_ F .2 s~
év2 a - k" + iuoom) a= S(Y3_!E,m) s . \-J)

o S By s

with f the Fourier transform of the rigaht side of Eq. (Bl )}
with respect to t and p. Clearly, if the source function f
is significant only for

x2 >> uow (84}

10w on the left side of Eg. (83) may also be neglected, which

amounts to drophing the time derivative in Eg. (81). The iden-

tical argument applies, of course, tc Eg. {(60). Moreover, under

the same conditions (viz., Eg. 8%4), the time derivative in Fg. g

H
h £ {77b) =ay also be neglected, sc that E = -V¢ . Tc s2e this, we -
B merely have to rewrite Eq. (77b) in terms of A with the aid of ’
- é the Lorentz gauge. Thus, for y < 0
e ] ’
' ’«; f‘? {
% % 40 -
, 22 §§
> & ¥

¥
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By representing A in terms of the Fourier transform as in Eq.

(85)

{82), we again convince ourselves that for x? >> ¥ 0w, the time
dersvative in Eq. (85) may agair be neglected. Under what con-
ditions is Eq. (84) applicable? IT we define the spatial wave-~

length of the hydrcdynamic disturbance by A = %;, then with

w = 258 the ireguality in Eg. (84) reads

103

T

A << meters .

Thus, at frequencies z2s high as 1 Hz, this "short" waveliength
approximation encompasses all wavelengths that are much less
than 1 km. Clearly, Eg. (B6) encompasses tre range of pre-
dorminant ocean surface wave phenomena. Alsc, for linear
internal waves with frequencies as high as 1672 Hz, Eq. (86}
gives A << 10 km.

The conclusicns rsached on the basis of the preceding
heuristic arguments are fully supported by the results ob-
tained with the aid of the exact formulation presented in
Appendix D. Conseguently, the dominant electric and nagretic
field components induced by ocean currents that depend ex-
plicitly on time are given by the equations of electrostatics
and magnetostatics in which the time variable enters simply
as a parameter in the fluld velocity field.
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Iv. EXPLICIT EXPRESSIONS FOR THE MAGNETIC FIE'D
COMPONENTS UKDER THE QUASI-STATIC APPROXIMATION

Having established that electromagnetic fields induced by
hydrodynanic phenormena with scale lengths ruch shorter than
1 km are governsd by the eguations of magnetostatices and electro-
statics, we now proceed to obtain explicit expressions for the
field components.

The induced magnetic fields follow by taking the curl of
(69). The result can be written in the following fornm:

B(r,t) = u H(r,t)
0 [ -]
- fﬁy'ﬁ a%p' Slz,r') ¥z',t}, \87)
- -

where V(r',t) is a column mairix formed by the three fluid
veleccity components Vx(gf,t), V&(g},t), Vz(gf,t) and the square
ratrix G(r,r') is the hydrodynamic-magnetic Green's function.
Triz matrix comprises the components of G in (70) and the compo-
nents of the earth's magnetic fieléd §°. Since the components

of G are different for observation noints above and below the
water surface, we shail distinguish them by superscripts

+(3>0) 2nd -(y<0). After tedious but straightforward algebraic
ranipulations, one finds:
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~ } P P i
o R S .uaws&w&is:asww”"‘““' .
- i

= ] i + y
Gxx T 0¥, Boy X GYX'(E.’E') (.883') -
+ . + .
G.IY ¥ B, vTGyz(-I—"E'} (88b)
+ 3 & )
Gxz = o1, Bov 32 yx(Z.T") (88c)
+ G, (r,r')
G;x - o, Boy 2= (892)
+
G;y = auo I—30 ° VTGO(E’E') (89b)
+ 3¢ (r,r’)
G;z - o, Boy 3z (89¢c)
G 2
zx ~ ¥ Soy 3% yz(r r’) (902)
+ &
. - - ]
; Gzy ou, By - Vo Gyz{z,r) {90v)
3 + 2
& = '
¥ 6,, ou, Boy 33 Gyz(r,r ) (9¢Cc)
Ly
3




-
~ = oz 9 a ] 9 - LN ] M
6y = O, XBby 3y § (r,r') - 57 “yz(r’Ef)]+ Bo, 3z Gvy(g,g_)¥ (918)
GZ. = op ;B 2 6 (r,r') - = 3 (r r')]-n 26 (r r')* (910)
Xy o | ox| 3z "yz == - 3y “o'=—=— oz 9z yx ——
6. =op |B -2 6 (r,r') -B_ = 6 _(r,r") (91c)
b & ol oy 9z Fx = cx 3z yy —=—

r 3 3G__(r,r*)
R g ® - 22 - .
6.x = %% [Eoy 3% Cyz r,r') - By, 5x (92a)
- | 3 - 3 2
Gzy = on, lgbz 3x °yx(£’£f) 12 Go(r,r "-Box ax vz(r’r )¢ (92b)

3G _(r,r') 5. (r,r')] I

- =gy ) o!BL ) Byxter ER .
sz cuo lBoy[: 3y ax + Box F33 yy(r 2 ) €92¢)

There are two general ciasses of hydrodynamic disturbances
of interest: spatially and temporzlly localized f1Ows and
;2like disturbances, in which the time-dependent veleccity

’l

]

ield ¥V is more conveniently expressed as 2 superpesition in-
F-)

ct

1
grai of traveling waves of the fornm exo(-ik p + iot). In
e first class of problems, the volume inte grals in (88) are

et

pest carried cut directly; for wavelike hydrodynamic disturb-

ances it is more conveniert to initially express the compoenents
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of 6 as two-dimensional Fourier transforms with respect to p. o
FPor this purpose we define
-] -
~ —ikn-(p-p')
+ 1 + - =
G~ ') = G 3 ' 2
pq(z,z ) (2')2[[ pq(l_r.r,y,y ) e %kn (93)
where p,q stand for x,y,z. Similarly for V(r',t) we write
) I"' - ~iknep" (94)
E(E"t) :J/ !(L[T_’yz,t) e dzET -
forming a sguare ratrix of the elements in (93), and denoting
it by g(gT;y,y;) xe have the eguivalent form for (87) :
a0 . -i}r;T.g
B(z,t) = B(kg,y,t) e Ckr , (95)
-
with
0 .
E(ﬁ:y’t) = j dy' 2 (QT;Y,Y') K(ET,y',t) - (96)
-
)
1
2
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The components of 6 are found by taking the Fourier trans-
g forms of (88) through {92). These transforms are readily found
fron the corresponding transforms of G o? ny, Gyz, G:iy as
determined in Appendix C. There 3t is shown that
+ 1 ) 2 “ikgpe (p-p") ~kp|y*y* ]
Gyz = (2')2ﬂ da _l-;T e (—ikz) e ,‘(97a)
-0
22
- s o1 [ UprGee) Ky 15y
ny = 2677 a‘k, e ( ikx) , {97b)
P )
2
Also,
p -]
¢ - _1 2, “iKp(p-p')  -knly-y']
-—00 2kT
- 1 “ikot(0-p")  -lply-y'i  -kolyty']
6y = | ax; e e - . (974)
(27)2 *
Upon employing (97) in (88) - (92) one finds the following
expressions for the elements of G :
t 87
&
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(38a)
(e8b)
(98c)
:
,
3
? (99a)
e &
3 (99b)
(9¢c)
(1602)
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- e e =

/ 2 - gt
e { Bk, + By K, . kp(y-y ) (100b)
f;zy= °“o\‘ 2:

5 :

g kvt (100¢c)

1k Kp(y'-y) K, gk kelyty®)
‘ (a —= Boz)e ‘T * ﬁ (ETZ' Boytl soz) e 3 7Y ,

2 ' f (y+y*)
ik “kn(y-¥') Kk, (k ) kg o
.(Bo +——2 B )e kT + ETE (gz BG +1 BOZ e 3V <Y »

- y kg 02 ¥
(101a)
ny =
-2 + ] - (y'-y)
k Kk, s 2 5 )ek,i.(y y )_ . Ky L gy
2 0oz 2 OX ox
o, | G
2 {y+y') “kn(y-y')
2 kxsz ..E?.B )ekTyy + 3 ekT 3 2'<y >
ki 0Z k;. ox ox
B (101b)
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- ou k k (y+y*) ko ly-y'] ]
6, =-—2l1 X5 4 i3 ekT -1B _ e “r > (101e)
X2Z 2 oy [5) ¢ [0) ¢
A
“ cx k. Wk kK (yty') ki |y-37] ‘
6 =-—2X R Zg 4 ip e T ~iB “r > (102a) ;
zZX 5 3 k. OV oz cz !
Kop i _
: 2 - -
k k k2 ko(y+y') p(¥'-y) .
$ B -—8B e ;s yl>y
= 2 Oox. k}, 0oZ o2z
~_ oy o k'.I.‘ 1 H
E k. k, B k; kn(y+y*) -kq.(y-y')- . !
: - —B e e y<y i
) kz’ (0).¢ 2 Oz oz
5 T kg
¢102b)
622 =
2.
=3 X “ka(¥'-y) k [k ko (yiy')
21 -i-X Ty Xl x 3 T - gt
-3 Boy ikT Bx]® + ko \ B Boy+ iB,, ] yoy
ou,
Py ¥ “kp(y-y") k [k B+ 1p kplyty'y ,
sXp*)e i | & Byt e 3 ¥y . ;
Boy+‘kT ch kT kT oy oX :

%]




V. ELECTROMAGNETIC FIELDS INDUCED BY §
TRAVELING WAVE DISTURBANCES

The preceding formulas for the magnetic field components
induced by hydrodynamic disturbances in deep ocean are gener-
ally valid. Their practical application is, however, limited
to flow fields for which an adequate theoretical basis has been
established. Here we shzll single out and discuss only linear
(smail amplitude) internal waves and surface waves. The hydro-
dynamic background material is presented in Appendices A and E.
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We first consider internal waves.

&
3

A. MAGNETIC FIELDS INDYUCED BY LIMEAR INTERNAL WAVES

4z frequencies well above the inertial freguency and in
the absence of viscous effects, and furthermore provided the
Vais3alZ freguency profile does not exhibit very abrupt changes
with depth, the spatial Fourier transforms with respect to the
ransv=r'se coordinates y,z of the internal wave velocity fields
are given b¥ Egs. (E-26), (E-28) and (E-29} of Appendix E.

' ; ik, i (i)t -9 (k )t}
v (,y) = - -;%:2 [ e 7 7 +a(x)e “TJ, {1032)
° n
- ie ()t -0 ()t
¥, (kpy) =Zn: 6. (¥) [A;(E,r) e MY +a(e T ] , (10%)
. ik 10 k)t 10 (k) '
V_(kq,¥) = —f 2 O (V7 A;(}_T) e 7% A (k) e n ] > (103c)

where w& have replaced X emp loyed in Appendix E by ET’ in
consonance with the notation in the preceding section.
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Although the various gquantities entering in (103) are defined
in Appendix E, we repeat them here for ready reference. The
$,, are eigenfunctions of the internal wave mcdes satisfying the

eigenvalue equation

@ N2 Yy =

with ¢n(0) = ¢n(—D) = 0, D being the ocean depth. ¥For-a deep
ocean it is reasonable to assume that D + « in which case one
of the boundary ccrditions should be replaced by lim ¢_(y) - 0.

y-’.ﬂ

A mathematically meaningful problem would require that this
limit exist. This will be the case if the V3aisZld freguency
profile N(y) is assumed to decrease continuously to zero past

DAL

.;e:\‘ “’ UANT

.
¥t
3 redh b

sone depth as, for example, for the exponentially decreasing
profile used by Garrett and Munk [8]. The Ai(gT) are modal
amplitudes which in generzl depend on the magnitude ané diree-
tion of the transverse wave number; the dispersion relation for

I

%

3

Z

oS
ewtd

each mode is denoted bty Qn(kT)’ Qn being the angular frequency
entering into (10%).

The components of the induced magnetic field are obtained
by substituting (103) into (96) and employing the defining re-
latlons for the matrix elements of G, e.g., in (98) - (102).
For y>0 the three corponents of the induced magnetic field are

s ot
by Yk deki ;i

VEss

3

-4 FUS AN S

Iy Ny e

B (r,t)=3u—° e-isTog.kTyd’ka (ﬁ):kg B -151 B
S TN BT ST TRy oy

D LY
Z lpy* veor | 0% plkepie  _ -19,(kp)t
f e ¢n(y )ay An(g,r) e + An(k,l.,- e
n -l

el 4 Lot e antdn fttaten 2 s fage
33 3 L 7 1!
M1 ’» oleerd ..'“ o L
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(10%)
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ouy . ~ikp oK.y , K,
: . . _o T a2 i B +431—<B )
3 B ,t - - [ e I
y(r— ! 2l \ oy kT =c
- 0 ' 10 (k.)t 19 (k;)t
y -
. Z f ekT ¢ (y*)dy* A;(g.r) e © “r + A (kp) e n
= Al n -«
S (105b) ;
Z -ﬁ. :
b . |
2 A g
& s f
E Ly e e AR k, |
] 5 = —] — B is i
' : Bz(?_’t) = > ﬂ d ET kT 2o oy kq‘ |
. |
~ ok yt 12 (ko)t -10(kg;)t
e e s vy | Al e P % B_(kp) e .
~ 4
(1052)

In the derivation of these equations use has been made of the
fact that ¢n(y) vanishes at y = 0 and y = -», so that

o : LR <
j;n(y.)ek'ry dy'=-ij ¢,(y") e éy' .

-0

For y<0 the expressions for the rields are somewhat more com-
plicated. One finds

N B A 6 b s A e o bt e o
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—_— = e
Y
Y
[
- ouo u-i}sr.- 2
Bx(g,t) = " e d_lg.l, .
21k ik, kv £ ky' O k3
DB | == e —= (e T f e T 4 rayrre Tf o on(y-)dr)
n ke - y ‘
b (5, - ) (0 e gy -y )
Z X Y ' 1 * t
+ kT(go X e ;I-: e ¢, (y")dy'-e yje ¢, (y')dy
2 10 (k.)t -0 (k.)t
-la;(gla R R A (k) e T “r ‘ T (1062)
|
5 (P 7 e
3 B (r,t) = — J - Q%K .
21k 1k, [ -kgy ¥ ' 0 4 oo
Z
Z Boy[ 5 ¢ - = (e f ekTy ¢ (3")dy" + ek'ry_[e ™ ¢n(y')dy')]
n LT kT - y
. o\ 0 ® gy l
2 =1
+ g By K J\® ./—V e” ¢ (y")ay' - ekTyf e E ¢, (y")dy’ ’ - ;
19 (k,)t ~-19 (k,:)t}
°{ “;(51') e " ki +A (k) e TOF {106b) o
54
1
e & AR SR ——— J




SRR el bt b il b o g e ¢ ad oy

Y

ittt N

e o

'4';“,:.;,;‘ i1 '."A{-.L

il

A Ak
UeAP Wiy Lk »

k7

k e A
AR

Rl

-

0
k. yr -l == ® - 1
e ‘] dy' e o ¢ (y)dy: - e kTy/de' ekTy )

}' -0

[ ]
™
ow

«

kn*B —k-y ' ]
-1 =201, ftl»(::r)ek'ryd:;r'«!wek'ryfcs(:;r)ek'l\v 'J
‘T -~
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+ n - -
. {An(_)g.r) e + An(l_(,r) e (1060c)
The formulas for the induced Tield components atove the
ocean surface, Egs. (105a - 105¢), can be written in a more
compact form. For this purpose we intrcduce the complex unit
vector a,

a= é_(f"_l. - 120) . (107)
p

Evider:tly 2-a%¥ = 1. One then finds thst for y > 0, the spatial
Fourier transform of the inducad magnetic field components 1is

Blko,¥,t) =

2 + iﬂnt - —1Qnt
' a
ouoe g_g._g fgp(y)e ay :'n" -!-Ane >

while the induced field itself is given by
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The relaticnship among the three components of the induced
fieid is best illustrated by resclving its spatial transform
B along the three mutually perpendicuiar unit vectors E%, t,
forrming a right-handed cartesian coordinate system for each

wavenumber ET'
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The gecmetrical relationship is illustrated in
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The unit vector t points ﬁlong the wave crest and normal tc the
direction of propagatien352 of .the internal wave field. Wwhen

resolved along these three unit vectOors, B may be written as
follows:

B = Bk E; + Bt t + By i, - (110)
Since §2 b 4 = t, one finds
a! kT zo ) L+ 2a
‘B, =0 (1132)
3 0 J 0 & - ’l
~ Oyt o -K,IS z . },?y , + mn;, - -lﬂnt !
= e— - - 3
3 = e (2 go) -;. ¢n(y ) e Gy An e 5 An e J,(.llb)
* . .}
X =-i8 . (111=)

Thus, each Fourier componsnt of the spatial transform é_lies en-
tirely in the piane formed by the varticazl and t§e propagation
vector k.. Horeover, tne vertical component of B is egual in
magnitud; to the component along the direction o propagation
and 90° out of time phase. If the internzl wave field is uni-
directionzl, i.e., comprising only a single traveling wave,

the preceding observations apply to the induced field itself.
In that case, the vertical and horizontal componeats of the in-
duced nmagnetic field mayv be considered as forming a circularly
polarized Tield, an observation that has alsc been made by
Podney {7].

Thus far, we have focused entirely on the ccmponants of
the induced magnetic field. The rost sensitive magnetic detec-
tion instruments are superconducting gradiometers which measure,
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to a gocd approximation, spatial derivatives of the magretic -
field components. In order to retain maximum generality, we

shall define the gradient of the magnetic fieiéd relative to any

two nonparaliel unit vectors Ep, gq, gp- gp =1, gq- iq = 1.
The magnetic field gradient with respect to direction 59 of the ”t
induced magnetic field aiong the direction gq will be denoted :

by G_ . s
¥ oq Thus,

Goq(Lst) = £,-V(B-L ) . (112)

R U

Expressed ir terms of the spatial Fourier transfornm Gnq(gw,y,t),
0 -i;kaz.‘p— R ,
qu(g,t) = e qu(l'_t‘-r,y,t) d ET - (113)
-

Tpon zpplying formula (112) to (108) one obtains
qu (_}Er:y’t) =

0
' et 40t
- iou /2 Kk e—}iy(gp-g)(gq-g)(_a_‘go) zn: f ¢ ") e}%y dy" [A; e "+ e T ]

(11%)

Note that qu = qu which is a direct consequence of the fact
3>

that in the quasi-static approximation employed her2in Vx B = 0
above the water surface.

Since only tne relative orientation between the geomz2gnetic
field and the components of the induced gradients (or field compo-
- ents) is important, we may assume, without loss of generality,
that the geomagnetic fielé iies in the xy plane, with the x-axis
pointing in the direction of magnetic south. As usual we denote
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the dip angle by ¢D so ti.at
B,x = B, eoz ¢ , (1352)
B, = B, sin $p > (1155)
B_=0 . (ii5¢c)

Tne totzl gecmagnetic field Bo may be written in terms of A , ;

the magnetic latitude, as follows [7]: j

B N :
B, =2 (1+3 sin?a)2/2 | (116) |

ot

Gy AL e

where A = % in the polar region and A = 0 in the equatorial

region. The numerical value of BD in MKS units is

<

iR

B = 6.25 x 1070 ¥2LETS (1 ges1a) = 6.28 x 107 T . (217)

ol jact

¥e shall z2lsc ns2ed the relation between k ard the dip angle,

which is

: tan ¢, = 2 tan & (118)
';‘ Th2 total geomagnetic field Bo may¥ then be written in terwos
% of ¢D’ zs Tollows
3 _
H B
: 3 = P 0 <3, <3/2. (119)

()
~~
wd
+
(Y]

-
ccs‘¢D

v i U e b

RN R (1

W -

With the geomagnetic fielé iying in the zy plane we now choose
thres nutualiy orthogornal unit vectors which we Genote by
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£, 5%, 53 and which form a right-handed cartesian system
(2, x & 53) 5 &, and 53 lie in the xz plane while 2, 2y, >
as shown in Fig. 2. The arbitrary angle

2
r' 3

FIGURE 2.

o

etazen £, and the .xy plane is cenoted &y a. Also shown is the
{rcrizontal) wave propagation vector &, whose angle with the

x-zxis we denote by w. The induced magnetic fieids and gradients

#ill e exprassad relative to 2,5 L,, £,; the rejative orienta-
tion of these unit vectors a2nd the geomagnetic field is shown
in Fig. 3.
y
L 3
1) OCEAN SORFACE PARALEL
0 2 AR
2) 9p= D ARGLE
3) GEOMAGRETIC FELD M
—e xy PLARE
4) MOUCED MAGNETIC FIELDS
ARD GRADIENTS RESOLYVED
ALONG UNIT VECTORS
z L 1,
R -2 2]
FIGURE 3.
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From Fig. 2 one finds that the projections on £ R &2 and 2, of

< - 3
the complex unit vector defined in (107) are given by
1 -
£, 2a = — cos (w-a) , (120z2)
2 = s
2,o2=-L , (1200)
72
f3-2= L sin (w-a) . (120c)
/2
With the aid of (115) and (119) we also find the projection of
& on §0
5
a - éo = ;5 (cos v cos ég - isin ¢D)
B /72
= 1/2(<:os ¢p COS¥ - isin ¢D)’ (i21)

@+ 3cos® g

where we have employsd the polar form for k. :

k. = k., cosw
o
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- —oyoBb cos(w~a)[cos ¢ cos#-isin ¢D} -y
Gyolp¥st) = pe U hlkyt), (122)

"2(1 + 3 cos? QD)1/2

—opOBb sin?(w—a)[cos ¢D<xxﬁﬁdsin ¢D] ] o

613(1—’!1”5”") =

1 -
3(1 + 3-cos? ¢D)l/2 ,}T © h(hf’t), (1220)
- —op B sin(w-c)icos cosw-isin ¢._1 k¥
gllpyet) = —2 D 2 ke o hlket), (322c)

2(1 + 3 cos? ¢2)1/2

vhera h(gT,t) depends only cn the nydrodynamic aspects of the

internal wave field, ané is given by ’

0 oy . % ot
h(kpt) =§, 6,3 e’ a'fal)e T +al)e P (123
7 = 5

From (122} we observe that for 2 unidirectional internal wave

;= @) = = that 4 he gragient
spectrun (¥ = ) G13 23 = 0 so that only 612, the gragdien

of the vertical field component with respect to the wave
agation direction®, centributes.

prop-

This is in a2ccord with tne ob-
servation mz2de previously that a unidirectionazl internal wave
induces no fieslids along the wave crest, i.e., the induced mag-
netic fields form a strictly two-dimensionzl pattern «

variation orthogeonal to the plane formad by the ver

ot
b
[td
f
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the wave propagation vector.

Por future rsfera2nce we 21s0 ra2solve

i a's

t i
transform of tnie induced mzgnetic field B zalong the thr

orthogonal vector £,, 52, 33. We enploy the notation Bl, 32
and 33. Thus, with tne a2id of (121) (207) and (220) one finds
~ cos{w-a)[cos ¢ cosw—-isin QD] -kﬁy
L 1 - -
2(0 # 3 cos ¢D)

3 b S 3 3 ¥ ~ 354 3 A
which, by syvmreetry, is identical to the gradient with respect
to ¥ of the field component aiong the wave provagation
direction.
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coSs cosw—-isin -k
4 S
2(1 + 3 cos? ?3)1/-

h(g,l,,t) R (12kp)

a sin(wa){cos cosw-isin & 1 -
B3(1-:-,,:v,t) = oy B ) 177 *o e k‘ly_h(l_@,t) s (224c)
s 2(1 + 3 ces? ¢3)

[2%)

where again h(k,,t) is given by (123). HNote that the essentia
difference betw en the spatizl Pourier transforms of the gradi-
ents in (1i22) zné the Fourier transforms of the field zompons

wl
ot
7]

in {124) is that the former comprise the additional multiplicative

factor k a direct consecuence of the differentiaztion operation

T)
2long the horizontal coordinates. Indeed, we find the following

relations btetween (124) and (122):

512\1'. 2 ¥ t) = - k:ix Bl(:f:_-r’y’t) 3> (1253)
Cp3(kps¥st) = = kg Bo(kg,¥,t) . (125b)
-~ kT ~

£y, &Y = = - - A Y
GIS‘JT,y:,;-— > sin2(w-a) Bz(g?,y,t,. (125¢)

Clearly, for a unidirectional internal wave fielé (w = a), the
gredient iIs obtzineé from the nerizontzl component of the mag-
netic fizld througnh a multiplization by the negative of the

wave number. A£1sé, for 2 more general wave number spectrum,

the presence of kT 2s & rultiplicative factor will tend to weighn
more heaviiy the short wavelength portion of the internal wave
spectrum. This, of course, is hardly surprising since the
gradients are proportionai to a derivative of the field com—
porent with respect to the horizontal direction.
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We shall postpone the discussion of the application of these
formulas to the computation of the spectra of the induced mag.
netic fields and their gradients until Chapter VI. At present;

we turn to the development of similar formulas for surface wave
induced magnetic fields.

B. MAGNETIC FIELDS INDUCED BY SURFACE WAVES

The spatial Fourier transform of the velocity field associ-
ated with sm21] amplitude surface waves in deep Gcean, as given
by Za. (24) in Appendir A, reads

Y] -1

- X5
Vlkpy,t) = * g [ﬁtﬁr

it _ -9t
e -—-& Q%Q e Q%F+:QQ>RT)’ {126)
where 2 is given by the dispersion relationship given in (&-20)
as
Q=4+ /}:Tg . 2z7)
We shzll concern ourseives here only with induced fields above

the ocean surface.

aith (126) substituted in (96) one finds for y>0

~ o kv k \ k,
=0 T [INVE - .
SRR 3 E SRR v

T& T O'j S > (1282)
3 2% R Ep
...:‘, = T e [B()}’ -1 %‘ d §o hs(l—(T’t) > (128!))
TP LA S

=_0 z W= + N
z § € (”TX’&- B, iBoy] A (kn,t) (223¢)
where
PSS I i a0t
NEPD e -ape . (129)
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Eq. (128) can also be written in terms of the unit projec-

tion vector a in (107):

- OB Ky -
B(kLy,t) =—> e = a@B) nlg.t) . (130)

Tre algebraic form is quite simiiar to that obtained for
internal waves in (108). When B is resolved along £,, £,, %,
in Pig. 3, one obtains expressions analogous to those in (12k):

- ou cos{w-a){ces &, coswtisin ¥
B.{k_¥,t) = Og ¢D 173 ¢D] e * hs(g..l,,t),(13la)
* ¢ (1 + 3 cos® ¢

Zr L

é (vt _Oug cos &, cosvtisi ¢D ;,_y o .
2 ﬁp,}"’) = -X I BD 1/2 e ns(_l'_T,U) ’ (1310)
) T (@ +3cos? g)
- o sinhpa)ﬁns«h)camﬁisﬁm¢bf *y
B.{k,¥,t) = 5 = ~e * n_(k 2
"3\22‘?3- ’ ) 7] Bp a+ 3 COSZ ¢D)1/2 € ns(_}_'x_?,t) . (131 >)

For a unidirectional surface wave we may set w = a. One
then observes that the induced magnstic field iies entirely in
the plane contzining the vertical and the wave propagation di-
e

vertical and the horizontzl comronent of the in-

[ %2
rectieon gT; th
duced fields again are e€guzl in magnitude ané 9) deg out of time
phase, just as for unidirectional internal waves. The Fourier
transform of the induced magnetic ield gradizn: 2bove the ccean

surfzcs reads

G icuof§ “Hgd
ng(-:;’y’t) = - -5 }",z,(_f_-p‘_a_)(sq‘_a_) _a_*‘go e n (_lgr,t) - (132)

-
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When resolved along the mutually perpendicular directions

2> %55 24
again related to the B1 82 B3

£, in Fig. 3, the three gradients Gll’

G

12> 9,3 are
in (131) by Eq. (125).

Thus,

above the surface the geometrical and phase reliationships among
the induced magnetic fields and gradients for unidirectional

surface waves and unidirectional internal waves are identical.
Of course, the distribution of energy in freaguency and wave
number space iIn the two cases are, in general, quite different.

C. ELECTRIC FIELDS INDUCED BY SURFACE WAVES

Surface waves also induce electric fields above the ocean
surface. On the other hand, to the extent that Coriolis ef-
fects can be neglected, the electric field above the ccean

surface arising from linear internal waves is identically zero.
The last statement follows from Eg. (5%2), which gives the el-
ectrostatic potential inducedé by a velocity field with zero
Since this ccrresponds

normal velocity at the ocean surface.

to the boundary condition for internal
can pe induced for y > 0 if the normal
is everywhere zero. That the vertical
vanishes may be verified directly from

waves, no electric field

component of vorticity

component of vorticity

(103).

The electric field induced by surface wave motion follows

from (20). ¥We first express the free space Green's function in
the integrand with the aid of (97c) and express Vz(x',o,z‘,t),

Vx(x',o,z‘,t) in terms of their spatial Fourier transforms

YTYZ(E\:T,O,t), VI(‘IET’O’t). This _Vields

from= (126) one obtains

E(p,y,t) = - V% =_” e

kp

.[[ ke - kv ¥, (kp0,t) B, -V, (kp,0,t) B,

’o

Upon taking the negative gradient and substituting for V

z’

a®kn -

(133)

hY
X

(13%)




where

E(I-_K,T,y,t) /2 a (lo x E‘I‘)' go e RTS hS(ET.,t) . (135)

We now resolve E along 2y %5 53 in Fig. 3 to obtain

. ccs &y -kTE

- ‘f
(k...¥>t) =B cOoS{w-a) 51nw h_(%.,t) , (136) ‘
By ey 21+ 3 cost 62 sk g
~ ( ) cos¢ﬁ) .y

- E ,V t = - 1B Sim ¢ e = (k—,’t) bl (l—\7)
Falty {1 + 3 cos? ¢D}/2 e s ? :
H
) ©° % (w-a) Koy ( ) .{138) |

o v,t) = sin(w-a) sir~ e h (kn,t) .
\kT p(]+3cos ¢D)1/2 T st

Suppose we agair consider a unidirectional surface wave,
i.e., set w = a. Then, just as was the case for the magnetic .
field, the electric field lies entirely in the plane of the
wave propagation vector and the vertical. We again observe that
ithe characteristic 90-deg phase relat‘on obtai ins between the two
egual amplitude orthogonal components El and EZ’ &s the direction
of prcpagation is varied, the electric field sttains a maximum
at w = ¢ = 5/2 (normal to the plane containing the geomagnhetic
field) and vanishes at w = a = 0, i.e., when the surface wave
propagates iIn the dirsction of the gsomagnetic field. Note also
that only the horizontal component of the geomagnetic field is
responsible for inducing an electric field: when the &8ip angle
is 90 deg, 211 electric field components vanish. One curious
fact, which has already been remerked in Chapter II, is that the
electric Tield appears to be independent of the conductivity .
This indeperdence is only approximate and holds oniy if the con-
ductivity is sulficiently high, i.e., when the nonlinear terms
on the right of (13) are neglected.
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B. PROPAGATION OF TRAVELING WAVE-INDUCED ELECTROMAGNETIC FIELDS

ABOVE THE CGCEAN SURFACE

Although the preceding formulas give correctly the dominant
field components above the ocean surface, they fail to deseribe
the propagation of electromagnetic energy. For example, for
internal waves, only a time-varying magnetic field--but no elec-
tric field--is induced above the ocean surface. Under these
conditions, the Poynting vector above the ocean surface 1is iden-
tically zero, with the implication that no eliectromagnetic power
is coupled from an internal wave to the region above the ocean
surface. If thls were really the case then such a time-varying
field could never ve detected, since any detection process must
necessarily be accompanied by the extraction of a finlte amount
of power. The electric field component that would account for
such power extraction is evidently set equal to zero once the
quasi-static approximation is emzloyed. Even thcugh this field
ccmponent 1s "small", it must be large erough sc¢ that a product
of th2 form HyE x constant yields a detectable power leveli.
This constant can be nothing else but a suitably normalized
electromzgnetic wave admittance. We shall presently find that
if the magnetic fleld is induced by a single mode internal wave,
the wave admittance is given by /E;7§; c/vp, where ¢ is the
speed of light in vacuo, and vp is the phase velocity of the
internal wave; the electric field component E entering into the
product Eﬁy x constant 1s parallel to the ocean surface and or-
thogonal to the horizontal propagation vector of the internal
wave. The electromagnetic power transfer above the ocean sur-
face takes place in the direction paraliel to the directionr of
propagation of the internal wave. This electromagnetic power
is transported along the ocean surface with the phase velocity
V- Structurally, we obtain an H-mode wave, since it is charac-
terized by a magnetic field component a2long the direction of
propazgation. On the other hand, a hydrodynamic surface wave
will te found to generate two types of electromagnetic surface
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waves: an H-mcde wave, and an E-mcde wave. The magnetic field
component of the latter is normal to the ocean surface, and is
neglected in the quasi-static approximation. The two eliectric
field ccmponents are retained, and are given by the formulas i
ir: the preceding section.

We shall employ results from the exact formulaztion for
electromagnetic fields induced by general time-varying hydro-
dynamic disturbances as presented in Appendix D. In the follow-
ing, we first present a detailed discussion for surface waves.
The structure of internal-wave-generated electromagnetic fields

AT D Y S by e

then follows almost by inspection.

For simplicity, consider a single-frequency unidirectional

[PV VTV SO ORGP

hydrodynamic surface wave of amplitudzs A, propagating in the

s e R &

direction w = o (FPig. 3) with wave number X. As shown in Ap-

=

pendix D, the electromagnetic fieids above the ocean surface
can be represented as the sum of two eleciromagnetic surface
waves; one designated as an E-mocde (T¥ mode) wave (no H-field’
in the direction of propagatiocn), the otner designated as an
f-rmode (TE mcde) wave {no E-field in: the direction of propaga-
tion). When subjected to the apprcximations

Qu o
& << 1

SRR Lt AN Ly L XL
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the rields of these electromagnetic surface waves are given .
by Egs. (D-113) and (D-114). These approximations are, of !
course, 1lmplicit alsc in the quasi-static approach Tef. Eq.(86)].
The latter, however, encompasses the additional approzimation
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of neglecting the displacement current and magnetic induction
effects above the ocean surfzce, both of wnich effects we o
presently include. With the 2id of {115) and (119), the electro-
nagnetic field components of the E and H-mode assume the fol-
lowing form:

(1) E—=xdes:

A2 B_ cos ¢ sime —j —iKwp + 10t
E(x,¥,2,8) = =

(1 + 3 cos? $D3V2

55.0) AR B cos ¢, sine Xy -if+p + ift )

%(I,F,Z,t) = ( X

1302 :
(1 + 3 cos? %)y‘?e ;O /
A2 B cos ¢ sirk Xy -iHp + it ”

£ (x,5,2,t) =1 > (132ze)

(1 +3cos? ¢D)1/2~.

(2) H-modes:
oAQ B {[cos ¢, coswtisin $p]  Fy -iEep + it

b4 4

5{%,5,2,0) =

»

BE (i + 3 cos?. ¢D)1/2

2 \ cAQ 3_[eos cosetisin &1 -¥y -3¥-p + it
%(I,F,Z,t) = _( ;{0 o] ¢D l/i}) 2 &
: 52{(1+3cosz¢n) =

oAQ B [cos ¢, coswtisin ¢D} Ky —iKep + ik
. e

B (x,v,2,£) = 1 - =
E 52(2 + 3 cos? ¢ )7

o
ey
=
%
x

¢,
3

e

These fields are resclved along the unit vectors £, 2, !;3 in

3 .
ST/ e

g§- 3. The E-mode field compiex, Egs. (132). and the H-mode
r-3

i
Pt
o
0

omplex, Eg. (1k0), may be interpreted, individually, as ‘

oo Wlrd i

a classic electromagnetic surface wave transporting power z2iong
L3
(9

) o il tgn

(‘M

the X direction (diresction £, in Fig. 3). The group velccity
and the phase veloeity of these eilectromagnetic surface waves

are identical to the group and phase velocity of the hydro-

dynamic surfzce va2ve. It is also interesting to obtserve that

g

2 s ¥,

i B

L T
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these electromagnetic surface waves are structurally indistin-
guishable frcm surface waves that would arise ir air above a
dielectric interface for plane waves incident from within a
dielectric half space and totally reflected at the interface.
The refraztive index of such an eguivalent dielectric would
have to be extremely large. It is given by¥

o

: “=?p—s$‘a’
where vn is the phase velocity of the hydrodynamic surface wave,
6 the angie of incidence of the plane wave from within the di-
electric and ¢ the speed of light in vacuo. One then finds
that n sin 8 ~ 107. Referring to Fig. 3 and Egs. (139) and
(140), one observes that the amplitudes of the E~mode surface
wave components are m2ximus when & is normal to the herizontal
cozponent of the earth's field and that they vanish for X
aligned with the earth's magnetic field. One also ncies that
the vertical ceoponent of the earth's field does not centiribute
to the E-mode fields. Gn the other hand, the H-mecde surface
wave amplitudes depend both on the vertical and on the norizontal
cormponents of the earth's field. When the verticzl coapénent cf
the earth's field is zero {e.g., in the equatorial regions) the

Hi-mode surface wave components vanish for X parailel te the
earth's {ield, and are largest when the surface wave travels in

Db gt s

orndo bbb g e

3 AN T

'y

the direction normal to the earth's field. The real pcwsr {low
in each individual‘surface wave mode is directed a2iong the proo-
agatvion vector X. The complex Poynting vector for each mode is

The vertical attenuation of thase eieciromagnetic
2

v
surface waves is actualiy Kil —ce s whiech factor
has been approximated by X in {(139) and (130) since

w << 1,
.o/c 1

<
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Q% A? B? cos? ~2Ky
( ° 2 *p e (g -in) (1512)
al-+}3co§z¢b)

= e (g +iz,) . (1k1p)

The real part of P; and P, is directed along K(%£;} and repre-
sents rezl power transport by each surface wave; the

parts are directed along y(gz), and correspond to tims-averaged
stored energy reguirec¢ to support the traveling surfa

0
14
n
%}
(14
[]

The negative sign &f the imaginary part of P
the stored esnergy is predominantliy in the electri
the oppesite sign of the imaginary part of 23 Shows that for

the H-mode the time-averaged stored energy is predoninantly meg-

netic. MNote That the r:al and imaginary parts of P. .. are ecgual
£,5H
in magnitude. This is a conseguenc i

[sﬁz¢ni-ﬁxs«%)sﬁi¢a].

(152)

The last term represents counling between the two surface wave
=cdes so that P # P_ + P.., in general. 1In partisular, this

coupling leads to r2a2i power flov along 53, {i.e., crthogonzi
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to the directicn of propagation of eack of the modes) of the
-amount
-4E§'A-<:B§ 2 cos ¢y sin ¢

Ref=-_§3==e sirw .

BX(L + 3 cos? &) (243)

if w = 0 or (and) Bcv = 0, this terz vanishes, in which case

only an H-mode is excited. Similarly, there is no coup:ing
wnenever 3 _ = 0. {Only the E-mode is excited.) The rutio

Re P . 2 in’s
E _ 15 %2 E_O co0Ss ¢D sin“« (181)
Ba P, a2 R - .
= tH Yo ] (cos? 4., cos?w + sin? )
- E> 4
€, —a .
Since ¢ = & mho/m,a—-={377) chm ~ . and K for surface
waves is on the ord8r cf unity or less, the power transported

de zappears nmuch smzller than thet carried by the
mode cxcept for 6. = 0 anéd » = w/2, i.2., when the latter
S it turns cut that when both mode contributions are
non-varishing, the dominant contributor to the real pzrt -«
the Poynting vector is not the E-mode or H-mode taken in isola-
tion, but the I to H-mods coupling term given by (143). Under
these conditions ths net re-l powsr flow is dir=cted nearly

nor=ully to the propagation vactor X,

Jots

.., 2along 53 in Pig. 3.
This mey be seen from the follcsing considerations. The mag-
niixde of the resal part of the total Poyuting vector in (1%2)
may be writien as follows:

oy 2 02 L2 3

Nlu

1652 872 cos ¢, sin &, sirw
. [1- i) PR =" % (25
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If we denote the angle between the propagation vector K and the
direction of Re P by'ex, one finds

g2 ..
Eﬁ;ﬁ- sin2<§)sanh
tan €, = oz - (146)

l1- 1-?11—0 COSZ¢DC082H’
[+

The geometrical relationship between Re P and K is shown in

Fig. &4, below: x
)

Thus, if w # 0, only in the eguatorial region (éD = 0) and the
polar region (¢D = /2) is the real part of the Peynting vector
directed exactly along K. A&t intermediate latitudes. say A = /5%,
(see Ec. (118)), tan ¢p = 2 and one obtains

Taking @ = 1 rad sec ¥ = 1/9.8 rad/meter tan 8,~6.6 x 10° _Sxnw
* 1-‘5— sinw
ihus, unless ¥ is neariy zero (i.e., the hydrodynamic surface wave
is traveling almost exactly along the directior of the horizontal
co=ponent of the geomagnetic field), 8K==§, viz., the direction

of electromagnetic energy transport is nearly nsrmal to the di-
recticn of propagation of the hydrodynamic surface wave.
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To obtain some numerical estimates of the magnitude of the
3 S o2 - = &
electromagnetic powers, i.e., Re P, consider first ¢D 0 (equato-

rial region). Then

2 3 2
2 _ ¢ u @ B
Re Pz% A e 2Ky °3 - B c052 w -
. 16X L -

A

. . i
i N S I R U

For § =1, X = 1/9.8 rad/m, » = 0 and wzve height of 1lm, one
obtains at the-ocean surface
2

1l . 2
cos ¢D = — > sin QD = —_—
/5 5
and ;
z
ou g =2 2 \2'1{-
,,..:_;,‘202?“ [} - G lsgz__iz‘l_ 16% sin ®
- b —2 - . PO  — - - - 'Q - -
163 8 5 501 )‘
= Again, for the same parameters as irn the oreceding cne has at
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200 times iarger %han in the eguatcerial region. Note that tiis

I

golar region the Cross-po¥er tern g

z
density is then carried by the E-mcge alone. One odtzims in
-33 2 .
his case = 28 % 107%° w tts/=° o> kb times the maxirum power
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aprear rezar¥ably low, they are well sbove the ambient (3G0°X)
ther=al ncise level. For example, 2 rower cdensity of 10‘10
eo

2 < < 2 _.
watts/c:” Iirpinging on a sensor of effective zrea of 1 o»® gives
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1 Kz bandwidth, then the eguivalent "noise tenmperature” is

watts. If one suppozes that this power 1is contained in a

- -lu
= i0 = 7.24 x 109 °X ,
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sensitivities directly in terms of field cuantities instead of
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When one compares field
hen the relative significance of the E-moce and E-
node surfaze wave contributions is somewhat differert. Re-

aiegciric i itk the numericel walues
of the g0 wave imredances: I =) = ﬁf_ Is very izarge, whils
"EY _ e : - 2 1t}
z = —— is very smzli. Thus, fcr the E-pode at ¥ = 0 with
5 _= 3.i12 x 10°5 Tesla (sguatorizl zone), A = 1 :
o = %% % 18 f3uatsrizl zZonel, iz, =1 rac/sse
® = s l:. l= 33 =331.2 y velt/m, wuile thz magnetic field is
- ..=-0 - - - ==
u_jH,|=8x x 357! . 22 X 3.2 X 10 7
L 53 > -
= 3¢z x 0.8
=3.55 x 10723 Tesia = 3.53 z 1071 o7 whieh 2 ie i
=3-23 i Tesla = 3.53 z 10 oI, which Is well outside the
- e L oo -
SenSiTiVItYy range of present cayv mazgnetometers. Cn <he other
nly . Th

power cerried by the E-mode is

3.53 x 10 3/#1 ‘0'7} = 8.76 x 10°° watts/az. For an effsc-
tive sensosr area of 1 cmz this correspunds tc a2 lsvel weil balow
thermai ncise at 300°K. For the same parameters for the H-mode
cne has
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=3.84 x 1671% mesia = 384 o7 ,

which is well within the sensitivity range of current magnetic

sensors. However, the corrésponding electric field is small,

[N -..-7 - - - -
2 4% x 10 " x 3.1i2 x 10 >

& o o~
= (¥.0?

viz., i£2

~3.76 x 10'9 volt/m = 3.76 x 10-3 p volt/m. The power'
carried by the mode is approzimately 5 x 19713 watt/mz. For
an effective sensor area of 1 cmz this yields Toqz 3.62 x 108 °¥
for 2 bandwidth of 1 Hz. In summary, the H—mod; ccmprises
detectabie magnetic fields, and a detectable power density ard
an essentially nondetectzble electric field. The E-mode
comprises detectable electric fields but a nondetectable

fk NN R AN At S P S ¢

magnetic field and power Gensity. It snould be noted however

<

q\
i
£

§

that this low power dernsity correspondés to the E-mcde 1itself,

and does not include its interaction with the H-mods. This
interaction power 3ensity is usualily larger ihan the intrinsic

we sheculd nows like to comment on th2 connection between
"full wave sclution™ in (13¢) and (14Q) and the correspendéing
nder the quasi-static approximation Egs. (131)

h g
(™)

et

v

(20

3

ct

g

M

0 M

sasi-static case H3 in (139b; and

¥

an

=5 {

2

are, of course, identical. This may be verified by setting
a

s

s%atic zpproximation, the

ID 3 - . -
=w h_= 22 4 18t 5 (123) and (22€). Thus, in the guasi-
eiectric field is the wverticzl and

only chareacteristic feature that may per-
=it one to infer from the guasi-static result that the fields

in reality are part of z propagating guided wave, is the 90-deg
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phase relationship between the vertical and the longitudinal

electric field components. Even though the transverse magnetic

field itself is nommeasurable, it plays an indispensable role

in the mechanism of electromagrnetic power transport. PFinite

(measurable) power is obtained by virtue of the high wave

impedance of the E-mode. Thus, since . .

E, = - Z(E)H where Z(EL K

K =377 € witn S - 107
2 3 980_37' v Hltnv i0 s

D p

the electric fielad 52 is measurable even though lH3| is very
small. Similar remarks apply tc the H-mode. In-this case the
quasi-static result ylelds only the magnetic fields, the zec-
companying electric field E3 transverse to the propagation
direction being negligibly small. However, its energetic inter-
action (in the sense of power transfer) is facilitated by the
fact tbat the wave impedance for the H-mode is very smail, viz.,
Z(") —g— = 377 ji » SO that H, = E3/Z(H) is again & measurable
cuantity. Of cou“:e, even a single hydrodynamic surface wave
generzlly generatez toth modes, so that transfer of electro-
magnetic power is not directed a2long X. It Is of interest to
contrast this picture with that corresponding to a unidirectionzl
internal wave. (For simplicity assume thzt it comprises only 2
single mode.) ¥We first recall that the guasi-static approxi-
rzztion in this case yields only =zgnetic fisids, which are guitl
simllar in structure to the magrstic fieids generated by 2

surface wzve, and which we fourd te corrsspond to an H-mode.
Evidently then, the internal wave gensrales nc E-modes; conse-
guentiy, the magnetic field components induced by an intzrnal
wave must correspond to an H-mode electromagnetic surface wave.
Since the two nagnetic fieid comporents hzve already been
cdbteined under the quasi-static zpproximation, the oniy
adéitional component needed o ccopiete the characterizz
this

=ode is the transverse sleciric fieid 23.
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component may be computed by multiplying the vertical comporent
of the H field obtained under the quasi-static approximation by

(m _ %

the wave impedance Z =5 > where 2 is now related to K by
the dispersion relationship for the int2rnzl wave. If more than
one internal wave mode contributes, then the electric field E3
is computed by summing the individual contributions of 21l modes.
However, to the extent that the internal wave is unidirectional,
the total induced eiectromagnetic surface wave still corresponds
to a2 pure H-mode field and hence electromagnetic energy is

necessarily transported only along the K direction.

Bt B .

il 7



L

e et

Y

PILY e .~ ¥ o
ot o v i
oL el bt o]

.
¥ S’

o[t
215
*;
&

b ey s

a_‘ 3
A AR
N
TR
PRI L As

e +
SITIY

-

2t g
I o] g

1"

Jo3

o ber e R ek

PRA-SS g i SEEE A R

vI. SPECTRA OF ELECTROMAGNETIC FIELDCS INDUCED BY

INTERNAI. WAVES AND SURFACE HAVES

for the electro-

~radients. These forzulas will then be applied to compule

internzl-vave-inGuced magnetic field spectra z2beve the ocean for

s

the case of exponential strztificzetion. For surface waves, the

eleotric and magretic field spectra will be obtzined for the

'v

ierscn-Neumann surface uave specirum mocel. We first consider

internzl waves.

A. SPECTRA OF COMPONEHNTS OF THE MAGNETIC FIELD ABOVE THE
OCEAN SURFACE INBUCID BY INTERNAL WRVES

¥ith the induced magnetic {ield resolved along the unit

fzctors & 2 we Jefine correiztion functions
1.2 fi2ld cosponents at 2z fized neight 7 above the ocean suriae

(135)

(10C) togetner witn (12%) in {146) tc obtain
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(ou B )?
R (p',0",T',t"5y) = <2
Vi (1+3cos?¢y)
o« [} -ié"_;_:_"*ﬁ_("'g" _(KI+K")y s
M ffawe e gL e Xnl LB E,
- - (2473
where
gl('c:,u) = % cos(v—a) [eos ¢p cosw — isin ¢D3 R (1482)
g-{w,a) = - %-{cos ¢ cosd — isin QD] s (148p)
g3(w,a) = %-sin(w—a) [er ¢ cos¥ -isin ¢D] . (148e)

Using Eg. {223), and Eq. (E-56') irn Zppendix E, one finds that
the statistical average in the integrand of (147) can be ex-
pressed as follows:

ChlE",E") BE(E", L")

. i (K7 ) (er-t" -1 (X*)(e'-t")
=2 Z LR v (Ee +y (He SE-ED
n (1k9)
where 0
L, (¥) = f s_ry)etY ayr (50

The functions ¢n(§') are real and nonnegative, and are propor-
tional to the spatizl spectra of the internal wave modes.
Substituting (1%9) in (137) and setting t'-t" = 1, p'-p" = p
one obtains

L d

82

it

SR Ao P

& s




g - . B ) -
NS i SN G . D5 - b P e e .. _ - Lo X .
. . T TR ‘ e A - T I

{on B )?
, R (ost,y) = — OB
W 2(1+3cos?¢;)

-iK-p 2Ky iQ ®)r -10 ()7
j] d*ke € gw('w a) ZLZ" [ n + ¢ (Ke n J » (151)

L AtElY " 3
vies

vk

M”;\'\*‘r

where we have defined

TN 4

AL
Bk 1

= By8y - (152)

z
An
W’
ks
=

The elements of the temporal cross-spectral matrix °\m (p,w,y)
are given by the Fourier transform of (151) with respect to T.
Changling the variables cf integration from the cartesian to the

polar form and taking the Fourier transform one has, for w > O,

on B 2
(_,U,V) = 1!._(_L
(1#3cos? ¢D)
-2 (0)y K_(0) LMK (@] 2° 3K (w) pcos(w-0)
E e *n *n n_n j dee O gw(w,u)\pr_[xn(m),w] .
: - v_ {w) 0 :
) i gn
{(153)

where Kn(w) is the solution of Szn(K) = w for K, and vgn(w) =

aq_(x)

2 -————’ is the group speed of the nth internal wave

3 dK K=K (w) :

£ n

mcde. In the special case of p = 0 (the sensors are collocated),

~ one cbtains the spectral density matrix proper:

‘ ~ (ou B )?
@, (0,0,) = n———f— :
3 (143c0574p) |
g | 2K (w)y K (@) L2K (@] 7
N e [ et x e -(254)
Ey ) v_ {w) nn
i n m' 0
| 63




4 £
¢ ' {aora -
L AP A N AN

eyl
ST BT

«
4
Iy g
5 L
S s
e P
R -
b= .
e & 3
F e
Y ey
: b5
S x
i) et
> * L &2
3 e
A £
s (L -
= o
bty ' g
B +3
e - .
g -
= et
S, 5
f e
o
—»
=

AN vtio)

‘.;/ /et

iy A O

1

’fll‘l".g'uﬁ"' £ 50 40t

T

AR,

- e L i oo o e e b N N T i oS o S . .+

RO

At this stage no special assumptions have been made with regard
to the exeitation fuactions wn(K,w). If we assume that they are-
isotropic, i.e., that each wn is independent of w, then a refer-
ence to the defining relations for Byus Eags. (15?) and (148)
shows that

@ (0,0,7) =& (0,0,y) =0 ,

= . -1/2
q—‘n (O,N,y) = 713 [d)ll (O,J,y) q’s (O,E,Y)] >

where

cosz¢D

Y = ~% sin 2¢
13 sin2¢ + & cosz¢ {1+ Zsinza)
D" 8§ D'

in other words, vertical and hcrizontal components of the in-
duced magnetic field zre completely decorrelated. On the other
hané, the two horizontal components are partially correlated
with the correlation cOefficient 713 which depends only-on o
and ¢;. At the eguator (¢D = 0), |713| reaches a maximum value
of /3/3 at a = 36 deg. Generally, we can take the spectral co-
here~ce function yvu(O,;,y),

@y, (00,30 §°

« ¢ (0,8,y) ¢,_,u(0,w,y)

[
[

¥5,(Cru,¥) =

, (155)

for v # 1 2s an indicator of tne directionality of the internal

wave spectrum. Thus, if the int2rnal wave spectrum is perfectly
directionai, we find that the coherence functicn between any two
orthogenal ccmponents eguals unity for all a. Th2 direction of
rrogagaticn of such a stochastic wave train can, in principle,

be detercined by a spectral correlation measurement of Yo OF 3
Y3 Consider, for example, a magnetic field sensor that provides
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a simultaneous measurement of a horizontal and the vertical mag-
netic field component. If this sensor is rotated atout a verti-
cal axis, the measured horizontzl component coherence funciion
will undergo several excursions between zero and unity. In par-
ticular, if the direction of propagation of the wave train is
defined by w = ¥, we find that Yy = 1 whenever w, =@ (rod =)
while Yo3 = 1 for w,oSazt /2 (mod w). Clearly, if the inter-
nal wave field is only partly directional, then results of such
a spectral coherence measurement can be used to estimate the
degree of znisotropy of the internal wave spectrum. Viewed
from a slightly different perspective, the Giscrimination on
the basis of directionzlity in wave number space arises from
the angular dependence of the gvu(w,u). These wave number pro-
jection factors provide enhancement of cross-spectral power of
a unidirectional internal wave field relative to an isotropic
one. A quantitative measure of this enhancement 1is the direc-

tive gain Gvu’ defined by

gvu(wo’a)
G (ho;u) = >a .

v
1 . Jee
>3 f gvu(ﬂ,a)ﬂn
0

(156)

When v = p, the maximum of G,, m2y be interpreted as the "maxi-
mum power gair" relative to an isotropic internal wave background
when an ideal magneétic field component detector is used to measure
component v. The galn is rather modest. As may be seen from an
exanination of Ec. (148), the largest directive discrimination
obtains for one of the two horizontal components. We find thet
for a = »/2, G11 attains 2 maximum value of 2 for ¢D = 0 (equa-
torial zcne) with w, = #/4 (mod n/2); for a = C the maximum
directive ga’n for this component at ¢p = 0 eguals 8/3 with

%, = €. Thus, the intrinsic spatial wave number filtering pzop-
erties of a magnetic field component sensor afford only marginal
Aiscrimination between unidirectional an¢ isctropic internal wave
spectra.
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Wher. more than ore collocated component sensor 1s employed,
each responding to a different orthogonal compornent of the in-
duced field, additional discrimination is possible on the basis
of spectral correlation. Note that in Eq. (156) qu is infinite
whenever y ¥ 2, indicating potentially perfect discrimination
between isotropy and unidirectionality. This i1s just a restate-
ment of the result obtained earlier in terms of the spectral co-~
herence function. In a practical situation the discrimination
would, of course, not te perfect. Nevertheless, multiple compo-
nent sensors would generally afford a greater degree of discrim-
ination than a2 single eomponent sensor.

In order to obtain numerical estimates of the magnetic
field spectra one must have information on the partitioning of
energy among modes in mode-wave number space. We shall employ
the hypothesis of Milder 2] according to which the modal con-
stituents comprising the wave number energy spectrum of internal
waves are distributedé in proportion to the square of their phase
velocities. The functions ¢n(§) are then given by Eg. (E-73) of
Appendix E. The correlation functions in Eg. (151) then become _

2
R 1 (cqgi)
i Q,T,Y) - E 2
1+ 3 cos ¢D
r -if-p -Zy g (x,0) r iQ (X)t -iQ _(¥)
]] d’K e e -g—"‘—"—,—’—— z LA(X) 93(%) 'szg)e (e
g -

-

n (157)

The quantity I(K) is an excitation function whicn depends on K
but not on n. It is this last feature and not the functional
form of I{K) which is crucial to the validity of the closed
form expressions for the spatial spectra given in the seauel

and Appendix E. The spatial cross-spectrum is evidently given
by
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Sy, (&) =
2
(ou B ) -Ky g, (W) .
%_OL - e S I{K)+1(-K) ] z LUK oK) , (158)
1§3cosz<gD K n
so that
- -iK-p
R, e50,¥) = j] e Syp(E-¥) da’k . (159)

The sur in (158) can be expressed explicitly in terms of the
Vaiszla frecuency. The reguired formulas are given in Egs.
(F-6) (¥-7) and {F-8) of Appendix F. If in addition we employ
the édefinition of Ln(K) in Eq. (150) we obtain

Eh
Z 12(K) 24(K) = X* f w2y f g(y", ')e el &, (360)

n

where g(y",v') is given by* (P-8) since here we are assuming a

deep ocean. After carrying out the integration one finds é

C 2 " ¥2 . 2 =y ;
E W om =5 [ yrme  ay . (161) ;
n - j

The right side can be evaluated for any specified V2isZlZ fre-
cuency profile*¥®¥_. Therefore, the effect cf different oceanic

Ch]

—
Note that g(y",y') = g(3',¥y").

tE L3
It is importarnt to note that in Eg. (161) the V3aisala

freguency profile X(y) must tend to zero as y + -=,
since we used the g(y",y') function for the deep ocean,
Eq. (FP-8). Thus Eg. (3i61) is not valid for a constant
N. & formula similar to Eg. (161) can be derived by
using Eg. (F-7), whick formula would then hold for an
oceal: of finite éepth and arbitrary N(y)(in particular, 1
© for N(y) = constant). ’
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stratifications on the spatial cross-spectrux of the induced
components 27 the magnetic field can be computed without the
knowvledge of the internzl wave eigenfunctions and dispersion
relations.

The integral in Eg. (161) wiil dbe recognized as the Lapiace
transform of y?N2(y). From the asymptotic theory of Laplace
transforms we know that for a ccntinuous profile the benavior
of tnis integral for large K is deterrcined bty y?¥?(y) and its
derivatives for small values of y, 1.e., near the ocean suriace.
Thus, 2 jump in y2N2{(y) at y = 0 gives the asymptotic decay of
1/K, while a jﬂmp in the first derivative constrains the asymp-
totic decay to 1/K2.

To compietely chkaracterize the b=havior cf the spatial
spectruz in (158) one must specify the excitation function I(X).
W2 shzall zassume an excltation function that is isctropic in wave
number space with a dependence or the wave number of the form
I(K) = CK’p; the constants € and p are usuzlly of semi-empiPfical
origin. (See discussion in Appendix =, Section D.) Reasonzbis
values of p appez2r to be between two and unity. Emplaying tais
excitation function in (158) together with (161), gives the
following result for the spatial cross-spectrum:

¢ (ou B )? = S
s w(g,y) = = gw(w) e K f vN%{yi e @y. {162)
1+3cos?éy i

L
Unlike the assumed internal wave excitation function (ang,

necessarily, also the spatial spectrum cf fiuid particle dis-
placementl, the magnetic fieid component cross-spectra are not
isotropic but depend con w througn the irigonometric terms
entering in gvu(w). At any doint 2bove the ocean surface, the
asympiotic deczy of Svu fer large K is dominated by the expo-
nentiai factor.
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We shall fird in Chapter VII that the spatial spectrum can
be used to predict the approximate beharior of the temporal spec-
trum observed from moving platforms. L. -e we shall use it only
to compute the r.m.s. induced magnetic field. Clearly, from the
defirition of the correlation function, the average of the sguare
of any crthogonal componen® is

o 20
<82 (p,t,¥)> = R (0,0,5) = ff A% S_ (K,y} f ® [ o s, Kwy) . (63
0 0

The total r.m.s. irduced magretic field at any point above the

ocean: surface is

cu N e

B_ (y) = E B> (264)
\)—
The integration over w involves the wave number projection fac- y
tors (148) zné (152). One finds
27
Jf Ey1(w,a)aw = ; [sin2¢D + % cosz¢D(1+2cosza)] , (1632)
9
2%
- F - 1 2
}[ 2(h a)dw = > [sin ¢p + 5 cos ¢DI s (1650).
0
23
f (w,:x)d-: = g [sinz% + ~§- cosz¢3(1+251n2a)] . (165¢) :
0 ‘:
4
Employing Eg. {3i€62) ir Eq. (163) and adding the three integrals
gives |
i c 142sins Ay o P .,y i
BW =g g ——2 - f&®e x [ yny Yo eyt . (166) |
s T (1#3cos’yy) o il
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As expected, the totcl injuced r.m.s. field is independent of
the horizontal orientation of the geomagr etic fieid, but depends
on the magnetic dip angle Op- There is a difficulty in (166}
with the .rtegration over K, in that for typical profiles and
wave nusber decay constants, p, the singuiarity at K = 6 will,
cause the integral to diverge. This 15 simply a conseguenze

¢ the assumption that the excitation function I(X) maintains
the pewer law behavior down tc K = 0. In truih, the whole
thecry, both in its electromzgnetic and the nyérodynamic as-
pects, cannct reasonably be expected to apply to arbitrarily
long wavelengths. Thus, in the internal wave part, we have
introduced simplifications to exciude the long wavelength in-
ertial range, while in the electromagnetics part we have relied
on the guasi-static approximaticn with its iIntrinsic 1limit on
the maximum permissibie length scale. The simplest way to elim-
inate the divergence problem in (166) is to truncate the lower
lirnit of integration to some non-zerc value K = K . This is
2lso done in the theoretical discussion of 1ntern;1 waves in
&ppendix E. ¥e now assume an exponentizally decreasing VaisZla
freguency profile of the form N(y) = K(0) exp y/b. The inner
integrzl in (3i66) then yields

0 2 1
28y N(0)b

jyz:zz(y)e dy = , (167)

§  (¥p+1)?
and the fcrmula for the r.m.s. field takes on the special form

Co? N%(0) , 142sin’e, " %y -p

B%(y) = {@wB)? ———= - & & (@) . {168)
S

s 32 P (1#3c0s?¢y)

For p = 2 the constant C is given by Eg. (E-125). Substituting
this in (368) a2nd evaluating the incegral for p = 2 and y = O,
vields

© ke wat A B meeens
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rms -
; bl 2 - “‘1 n -
(ou B) 1+2sin ¢D - Ve . 3vc.vc +1.5 ~ 31 ]:l'\)c (59
©F  (a#3cos’y,) 32mp, 1-v Inc | (v}’ Ve |
> 2 c

30

where v, = ch, E is the zverage internzi wave energy density
integrated over the vertizal water column, and Py is average
water density. Using the parameters extrzpolated frcm Ref. [ 8 3
as discussed in Appendix E, we obtain v = .327, E = -382 x 10"
joules/m?, anéd t = 1300 m. With these numerical constants the

total r.m.s. field 1is

——
s 2
142sin ¢D

B (0)= x13.76 . 107" Tesla . (1790)

oS 1+2cos?¢,

The functional form of the decay of this field wxith increasing

¥ can be determined by carrying out the integration in (168}.
Evidently, the decay is not pure.y expénential, as it is for each

individual spectral component.

To measure the magnitude of the r.m.s. magnetic field as
given by {170) requires a totai field sensor that responds
equally to 21l spectral components in the temporal freguency
domain. The relative contritution ¢f the spectral constituents
to the r.m.s. field is determined by the temporal spectrum cof
the totai fieid B(t). This spectrum is defined by the relztion-

shkip

B
<Blt+,7) Blt,y D = &= [ Pyple,sie™ au . (171)

Irn the special case 7 = 0 one obtains

B t,y) =2 [ Bpley) a . (172)
51
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The r.m.s. field can also be computed in the following alter-
native fashion:

@
-

-l

The three spectra in the integrand are given by (15%) and are
Just the temporai spectra of the individual components. It is
important to nete that ¢hB X ¢31 + 652 + 433 » as one might be
tempted to cencliude by equating the integrands in {172) and
(173). The mers fact that the integration in each of the two
cases ylelds identicz]l resuits gives one no information on the
relationship between tne two integrands. Cisarly, there are
many different functions ("spectra®™) from which the mean of
B%(t,y) may be computed through integration. For example, the
spatial spectrum in (163) is alsc such a function.

The determination of the specirum of the total field
requires the knowledge of the joint probability density function
of the magnetic field components, since cne must be able to
compute the average

(B{t#+1) B(£)> =¢( \I&f tr) + Bi(t4ad + B3{e4) \IB;_(t) +B5(t) + Bi(t) > .

(1743
This operation can b2 carried out, for example, when the induced
magnetic field components are assumed t6 obey joint Caussian
statistics. The, algebraic manipulations are rather involved
and we shall not carry them our. However, it should be apparert
even without a detailed calculation that as a result of the
coz=plete overiap in frequency of the three component spectra
>, 9, ¢§3 the spectrum of the total magnetic field will
cccupy 2 much larger bandwidth than the spectra of the individuail

conpcnents¥.
*
The mechanism generating these additional frequency components
is, of ccurse, the same as in the run of the mill envelcpe de-
tector when used without a low pass filter.
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In the follcwing we shall deal only with the temnoral
spectra of the individual compcocnents. We use the mode parti-
tioning hypothesis as in (157) and again specialize the
excitation function to its isotropic form and power law
dependence on the wave number. The integrations over the
gvu(”’“) are then carried vut as in (165) so that the temporal

spectrz for the three compcnents become

2

1
sin¢, + gcoszén(3+23052a)

d)ll(m:y) = Sc(wsY) s (1752)

R{1+3c052¢D]

2 1 2
sin ¢D + Ecos ¢D

2[1+3c052¢D]

S (w,¥) , (175b)

Pyplu,y) = c

o ; sin2¢D + %2052¢D(1+2sinza)
33(“0}:

(175¢c)

Sc(u,y) .
“[1+3cosz¢D]

d tG 25 the normalized comn-

1]

The function Sc(w,y) will be referr
ponent spectrum. It is given by
-2ZK_‘w)y -p-1
K ()] Ln[Krzi(tz's)l (176)
Sc(w,y) = 2% C(ouch)zw~ e - .
n E_(w) 'e'g!(w)

The " factor in this expression arises from the identity
w = Qn[Kn(w)].

In order tc compute Sc(m,y) for a.specified Vaiz3l3 fre-
quency profile one must determine the explicit form of the
eigenfunctions and dispersion relations. Recall that such
detaileg informztion is not needed in tre computation of the
spazial spectra, Eq. (162), which are determinable directly
from the ViEisdld frequency profile without the knowledge of the
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eigénfunctions. This simplified state of affairs arises en- ‘
tirely from our ability to carry out the sum of Eq. (166). In S -
the temporal spectrum, Eq. (176), an analogous suimation does

not prove possible since the modal index, n, also enters in

the factors [Kn(0)3°p°1/Kn(w) vgn(w). These provide additicnal

amplitude weighting that modifies the relatiye distribution of .-

energy in frequency space.

We now proceed tc apply formula Eq. {176) to an exponenti-
ally stratified ocean. The eigenfunctions for this case are
given by Eq. (E-107). The spectra will be expressed in terms
of the normalized angular frequency

-

"= 5oy :

N(0) being the maximum V@isdld frequency. We alsc define the
dimensionless variable v, v = Kb, arnd rewrite the dispersion
relationship in Eg. (E-104) in the folliowing normalized form:

n=—Y_ am
xn;v
where x is nth root of the vth order Bessel function. For

;v
each n, Eq. (177) has one real sclution for v, which we denote -

by V- If one also employs the formula for the group sreed
given in Eaq. (E-11C), the normalized component spectrum in Eg.
{176) may be shown to reduce to

P2 (®
Sty.0) = bn{ouB)2Cb  NO) 2 sP(ny) , {178)
p =

wh2re the sum is over the dimensionless spectra

2
-2v_ L 2v43 -2v -p-1f (v./n v -1
() 2 nbn n-, n lj(;n/ Jvn(t)tn at
s (n,z) = L Q7

v /N -
(v, /n) = 2n? 6( 4 2w E
n

J
Vntl

G4
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{ Note that the dimensionless quantity “n Is a function of 4, since
v (n)
3 and p = 2 it is given in Egs. (E-128) and (E-125), respectively.
2 With b = 1300 m, the constant multiplier appearing in front of
-;; Eq. (178) becomes

(g

.. p#2 2.25 x 10! (pF)2/Hz
! gy tin(ou Bp)2 Cbt N(0) =

. 2.66 x 16! (pT)%/Hz

we
(e
I
V]
v

Kn(m)b. The constant C is a function of p. For p = 1 ;

1A bexly ARG
a ﬁ: iyt

A

v
‘g
]
-]
]

- For these twc cases Eq. (178) was evaluated numericaliy. The
results are showr in Figs. 5 and 6. The frequency is normalized
to the maximum Viais&la frequency of .833 x 10" %Hz. FPigure 5
shows the spectrum o: the horizontal component, viz., Eg. (175a).

- Figure 6 gives the plot of the normaiized component spectrum
Sc(w,y) from which tne spectra in Egs. {(175a,b,c) can be obtained

- for any geographical location and relative orientation of the

S magnetic field (see Fig. 3, p. 60). The largest difference in

3% levels between case p = 1 and case p = 2 is at the ocean sur- 7

RO 7w 102 ST IOV D ) IEAELR T

8 3 face, and as one approaches the V3isZld frequency.

3 B. SPECTRA OF MAGNETIC FIELD GRADIENTS ABOVE THE OCEAN SURFACE
. . INDUCED BY INTERNAL WAVES

§; The expressions for tne spectra of magnetic gradients can
be obtained by a slight modification of the expressions for the
field compenents. We shall be interested only in the three or-
3 - thogonal gradients, 612’ 623, and 613, whose Fourier transforms
E: are related to the transforms of the field components by Eg. (125).
T3 The correlation function between Gvu’ Grs’ when measurec at the
same helght above the ocean, will be denoted by the four index i
“ guantity R

vu;rs(g,r,y). Its general form focliows from the cor-
R relation function for field components, Eg. (151), by including
the additional factor K? and taking 2ccount of the slight modi-
fication in the angularly dependert factors gvu’ as determined

gg, from the inspection of Eq. {i?5). We now write these new wave i

i
R 25
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FIGURE 5.

Horizontal component of magnetic field induced by
internal waves in an exponentially stratified
ocean (a = 0, $p = 0). The small departure from
the monotonic behavior of the curves for y = 0 in
Figs. 5-8 is noz an artifact of the graphical rep-
resentation of the data but can actually be ex-
plained in terms of the decay -haracteristics of
higher order internal wave modes.
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by internal waves in an exponentially
stratified oc2an
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number projection factors &s quadruple index guantities g

. VUSTrs i\-.;
(w,a). The correlation function for magnetic field gradients
is then
{on, B )2
R, .ps(85T5¥) = P
Vi 1+ 3 cos? ¢
] -
% L--3
~iK-p 2Ky — 10 (Kt ~ (x)r]
= 2 2 - 23 n o n .
z ﬂ ‘KK e e g‘m;rs(w,u) Zn, Ln(KJ[én(g_{_) e +y(-Ke .
= (180)
) The additiocnal factor of 2 will be z2ccounted fcr in the defiri-
= tion: of gvu_ rs° With the aid of Eq. (132) we have, for any set
. A 3
i of directions 5“, iu’ £r= 55,
i
g la - B j? 5
; . - = - - - : 3 L] ¥ —-—— -
- Eupsrs @) = &, < 2}, - a) (g, - 2F) (L - ) ™ (181)
3 =

4
s

Foi» the three orthogonal gradients of interest these wave nun-
bar projection factors are obtained with the aid of Eq. (120):

At Rt

glz;lz(w,u) = % cos?(w-a) [ cos? ¢ cos?w + sin? ’D] = %— gn(w,u) , (182a)

832;23(",33 = %s:hﬁ(li—a) [c:}s2 % cos®w + sin® ’D] = -g‘isin(w-a)glz(w,a),(J.SZb)

e

512;31(“’“) sin 2{w-a) cos (w-u)[ cos? ¢ cos’w + sin? “D] s

e

sin 2{w-a) glz(w,a) R (182¢)

g23;23(",u) = %- sin?{w-q) l'cos2 ¢ cos?w + sin? ¢D] =% 533(w,a) (1823)




T e P

- . i s R P Y A
gk o e T -

323;13(11,&) = - % sin 2(w-a) sin {(w-a) [(‘,OS2 ‘D cos?w + sin? ’D]
=_ %. sin 2(v-a) g,(%,c) , (162e)
g13;13(1-',a) = % sin? 2(w-a) [t:os2 ¢ cos?w + sin? ’D]

= % sin® Z(w-a) Ey(¥,a) . (18z1)

The other three projection factors can be obtained-by an appro-
priate interchange of indexes.

For collocated sensors @ = 0. In this case a cczbletely
isotrepic internal wave field ensures that the horizontal-verti-
cal gradients 12, 23 are cozpletely decorrelated from the hori-
zontal-horizontal gradient 13. On the other hand, partial cor-
relation exists between the two horizontal-verticai gradients.
Thus one finds that the spectral coherence function 712;23 is
given by the same expression as Y13 on page 84,

P Iy

TR T

I3

1
%
.t
!
»
E

AT

The general formulas for the texpor2l cross-specira for
ragnetic field gradiesnis are cbtained from Eg. (153) and Eg.
(15%) by simply placing the additionzl factor K;{u) in the .
nunerator of these expressions and replacing Evu by ngu

-wn‘. ’
4y
ks o3

Lt

3rs”
The qualitative aspecis of the discussion cn pages 3L ans 85

arply aiso to gradients. The numerical valuez of the maxirum
directive gain for gradient spectra 12;12 and 23;23 (i.e.; hkor-
izontal to vertical) are preciseiy the same zs for the horizon-
tal {leid cozponents. On the other hand, for the grzaient spec-
trut 13313 {i.e., horizontal tc horizontal) the achievable maxi-
. Tu= cirective gain is somewhat higher. Foer example, for a = 0,
¢p = O, the gain turns out to be 128/27 = B.74 or £.76 dB, which

cerresponds to the wave direction w, = cos 3 3 -
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Under the same assumptions as those underlying Eg. (1€2),
the spatial cross-spectra for the magnetic field gradients are

0
(ou, B )2 -Hy -pHl Hy
S (K,y) = & °.p By (w,0) e K j yRi(y) e dy

VLTS — 27 4 4 2 TS’ °
3 cos LN (183)
From this we can compute the total r.m.s. gradients above the
ocean surface. For each of the gradients we have
@ 2%
2 v . E = )y w S ¥
0 0
The total r.m.s. gradient will be defined by
6 ns (¥) <512;12 + €633.53) <6i3.13 (185)
We call the sum of the first two quantities on the right of Ec.
(185) the square of the toi2i r.m.s. horizontal-vertical
- ~(HY
gradient uims)’
2 (HV) = (@2 o2
52 77 (y) = €6f,.15(,8) > + (E53.55(3,8) ) . (186)

The integrals over the two projection facters entering in Eg.
(156) are given by orne haif cf the expressions on the right of

Egs. (1€52) ard (165cj. Summing the twxo contributions we obdtair

- L4 0
5 ; 2 14 3siv? -2Ky A2 2Ky
Gz(dV)(y) =C oy B “D f‘me X y.znz(y.) e d)"
™S 5% ) S 2 J ’
i+ 3005 & g -
(187)
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which is very similar to Eq. (166). The essential difference is
in the 2dditional facter of K2 in the integrand. To obtain a
numerical estimate of the strength of the‘r.m.s. gradients, we

again consider the simple case of an exponeritially stratified
ocean: and take p = 2. We then find Z

1+ 3sin? r Xz
@) CbZ‘IZ(O) (‘mo Bp)2 i “p f xe X . a8

Note that the assumption of a nonzerc cutoff wave number Kc is

not necessary in this case since the integral is well behaved .
2t the origin. (Cf. Eq. (168).) However, Kc still enters into f
the problem through its relationship to C, Eq. (E-125). (In f
fact, K, = 0 wili yleld C = 0.) At y = 0 the integral in Eg. '
(188} equals = so that

ot oy " T
by "f’;}'x-‘m\ v e_))t'd ""‘.’,‘ Bl e ST

2b
2 eind <
gy - (o Y —ooor D _E . K (289)
Grs (0 ={o%, B 2, 1d00%p T4v,
1+3cos” ¢ o 1i-v In c i
.. c Vc

For the same parameters as employed in Eg. (170), the total
r.n.s. horizontal-to-vertical gradient is

. 2
| G . 139 %

: s 1+3cos® ¢

hd 0- 655 m - (1%)

¥e see that the horizontal-to-vertical r.m.s. magnetic field
i gradient is largest in the polar regions (1.31 pT/m) anid drops
i 1/4 of this value in the eguatorial zone (.33 pT/m).
t

- Aithough the value of .33 pT/m is not very large, it must
be remenmbered that it is compressed within a bandwidth of about
-3
10 ~ Hz. £ the .33 pT/m were uniformly distributed within

thics band, one would have a spectral density of about 100 (pT/m)?/Ez,
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which is several orders of magnitude higher tran the sensitivity
of existing superconducting gradicmeters (~.1 (pT/m)?/Hz). The
induced grzdient decays above the ocean surface. It ma2y be
shown from Eq. (187) that the decay is aigebraic, i.e., as 1/y.
This slow decay is due entirely tc the fact thzt the spatial
spectral maxzimum occurs at K = 0. For z more realistic assess-
ment we should truncate the lower 1limit at K = Kc, in which

case the decay for sufficiently large y will eventually be
dozminated by =2xp - EKcy/b.

The preceding calculation was carried ocut for p = 2. To
assess the sensitivity of the numerical estimate ir Eg. (190)
to p, we now carry out the calculation for p = i. For this
ease Eq. (138) is modified in tws respects: an additional
factor of K appears in the integrand and the formula for C is
given by Eq. (E-124). For y = 0 the integration yields 1/2b2.
Employing Eq. (E-128) one finds for p = 1

- 1+3$i_'!2 k e ]
S0~ (gt 5L 1 s
- TR e
Cc

Compering tnis with (18%) w#= observe that the r.m.s. gradient
in (191) is larger than that given by (193) by the factor

1+v

i- vc &n

For Ve = -327, its value is appreximately 31.52. JConseguentiy,
for p=1

+3sin?
¢EF) ) = *

i . {192)
=S 1+3cos’§D

——net
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Thus, the value of » has & fairiy minor effect on the r.m.s.
value of the magnetic fileld grzdient. On the other hand, we
FY £hall find that the Spectral distribution of energy contributing
,'*' to this r.m.s. gradient is nodified substantially by different
choices of p, particularly for short spatial wavelengths.
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We now compute the horizontal-horizontal r.m.s. gradient
given by the sguare roct of the last factor in (185). For this
purpcese we need the integrated vaiue of the wave number projec-
tion factor £13;13" From (182f) we find

.

P .
B
P~
e
-

P ; V‘{ 3.2
St

2x
{ g13;13(w,a) dw = fi [sm%D + %—cosz¢D(1+231n2u)], (193)

and with tre a2id of (183) the square of the r.m.s. value of the
horizontal-horizontal gradient becomes

_ 2sin’§y + cos? (1+42sin’a)

Gz(H,H)(y) = _c_ - (o.u B \o .
rEs 64 o"p’ & (143cos?4;)

Ty SN [ " y
R R I ol NI ol oo o e

« 0

i - - Ky? - o
-.I age~2KY g P2 J’. vy e X3 gy . {194)

0
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WPt

el

Comparing this expression with (287), we note that the H-H

o e A A W 3 A et bt SR
.

4] ; gradient is smaller than the total H-V gradient. For example,

E ; *+ the equatorial zone (¢D = 0) we find,

2 i

| (

g H,H)

I Gl (y)

5 —%%257——— = %- dl+2s§n2a s (195)
ray 9

?\ whliie in the polar region (’D = %x/2}

e f {#,H)

iy G‘ 9 (3)

' Ec s -1 {195)
3 (H’v)l ; 32
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With excitation function I(X) = cK p’ Tthe temporal spectra
for the three pPrincipal gradients can be written in a form
similar to (175):

2 1 z 2
sin ¢p + g cos ¢D (1+2ccs?a)

L - ‘(u,y) = - S (U,.v) Py (197&)

sin2¢D + % coszéD (142sin2q)

®y3;23(ws3) = S,(w,y) , (1970}

k[1+3c052§0]

2 1 2 2
sin ¢p + 5 cos?¢y (142s2n2q)

¢13;1§(”’y) = Sg(u,y) s (197¢)

64 [1+3ces?y,]

where Sg(w,y) is the normalized gradient spectrum given by

r 1Pl
~ (w)y lK (u%] sz ( )] .-
S (w,y) = 22C (ou B )? o* E e n . (198)
3 p - K () Ven(®)

For an eéxponentially stratifiegd ocean, the normzlized gradient
Spectrum follows from the normalized component spectrum in (178)
by simply multiplying each term in the series by Kn(m) = v;/bz.

T YT
1 TR S TR AL WOuY ot b s

% Consequentl,,
=. 2 -p 2 (p)
Sg(y,m) lls(ouon) Qi(0)o Z Yn S (vy , (199)
=1

with sép)(n,y) Blven by (179). For b = 1300 m, the constant in
front of the sum becomesg

v
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A plct of the spectrum of the horizontal-vertical gradient,

(¢ = 0, ¢p = 0), Eg. 197a), is shown in Fig. 7. Figure 8 shows
the normalized gradient spectrum Sg(y,u). These calculations
hzeve been carried out for the same iInternal wave physiczl para-
neters as the compcnent spectra in Pigs. 5 and 6. One observes
that the differences between the gradient spectra for the case
p =2 and ¢ = 1 are quite pronounced, especially near the ocean
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FIGURE 7. Horizontai-to-vertical gradient
of magnetic field induced by
i internal waves in an exponentially
< stratified ocean (a = 0, ¢ = 0)
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surface. On the cther haand, it will be recalled {cf. Egs. 190

anéd 192) that difference in levels of the r.m.s. gradients for

P =1 ané p = 2 is rather insignificant (a factor cf about 1.5).
Evidently, most of the integrated contribution to these r.m.s.
vaiues arises from extremely low frecuencies (and long wavelengths).
This is quite compaticle with the curves in Figs. 7 ané 8, all

cf which merge toward the lower frecuency bané edge.
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FIGURE 8. Normalized gradient of magnetic
field induced by internal waves
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C. SURFACE-WAVE-INDUCED MAGNETIC FIELD SPECTRA ABOVE THE
OCEAN SURFACE

The formzl procedure leading to the expressions for the
correlation functions and spectra of surface-wave-induced
electromagnetic fields is very similar to that employed in the
preceding for internal-wave-induced magnetic fields. For the
magnetic field components we use Eg. (131) and obtain the
correlaticn between components v and u pneasured at the same
height above the ocean:

fou_3B)*
R\m(g' sP_",’-'r'at";F;‘ = 00
30}3cos’%f
2 R aglgaKtgt (K'Y
VEIEE o g ) gm0 (R 1) I

(200)

*The wave number projection factors gvg: are given by Eg. (148).
The statistical average in the integrand is evaluated by ref-
erence to Eg. (326} and Eg. (A-26} in Appendix A:

<h(K',t") BE (E7,t™)

e IR M (e'-t") -10(K*) (t'-t")
= ogv (V') e +¥(-X") e 6(K'-K") - {201)

- Consequently, with p' - p' = p, t' - t" = 71, Eqg. (200) becomes
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R (o) = §r —22 . |
Vi 143 0s? ¢y, !
!
7 —iK-p 2Ky -1 1I0(K)T ~3(K)T ;
/] %K e e X g\,u(*::,a) YK e + y(-X) e . (202) i
-
Taking account of the dispersion relation 2% = Zg the Fourier
transform of Eq. (202) with respect to 1 yields (for w > 0).
ou_B)?
Qw(g,m,y) = 32"- IR I A
143 cos? ¢p
2 2
- %— 2n -i%pcos(&ue) w2
we / dw e g\m(“’u) v (-é—-,w) s (2C3)
)
which for zollocated component sensors becomes
' ] . i
w (Guo Bp)z -239‘::- 28 w2
® (0,u,y) =5 —2P ©we 6/ dwgw(w,a} ¢ {—.¥ . (204) |
vk 143 cos? ¢, g
0
foa2
“ith the Pierson Neumann spectrum for g i“-g—-,w), Eq. (a-38),
substituted in Eq. (204) we obtain
{0
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® u(0s0,¥) =
2
_ 2 ot _. -2.-2 W +n/2
. Gu, B) L, T 2w U e s ,
— e (W,@) cos“(w-w ) dw , {205)
143 cos éD ’0—7[/2
%

wh

T = 3.5 m® sec”®.
developed sea.

whicn has a mazimup at

Since a = 2y/g, 8 = 2g%,U%,

here LR is the wind direction, U wind speed in m/sec, and

As written, Eg. (205) holds for a fully
In other cases the spectrum must be truncated
below the angular frequency w = w5 the value
mined by fetch anc¢ wind duration [11].

For a

cf which is deter-

fully developed
sez the spectrum is of the form w = exp [-aw’ - 8/wtifor 0 < w <

3

(206)
_6_35 EY . *
w o x(¥) = (y) (U2 + 1) -1 - (297)
At the ocean surface this becomes
T
_ 1 £
H Umax(o) = -',—2_ o -
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On the other hand, for wy = 0, the spectrum of the surface
wave displacement decays as o™ ® (Egs. A-34 and A-30) and

can be shown to have a maximum at o =\}_-§— g/Y. Thus, the peak
of the magnetic field spectrum is shifted in tie direction of
lower frequencies by aboui 15 percent.

At high elevations above
the ocean surface

LY i - .
‘,4.4\»"_.,‘”,&:;5 :a\ .':-;IK.K!;'.

so that

“pax (™) u*
s -7 —x-
max (gy)

which shows that for large y the spectral peak shifts even
further toward lower f{reguencies.

The r.m.s. value of the totai field is found from

P2
3
=
3
Baray
=
s
25
[4
3
Bes
:.,f‘ .
% :

3 «@
ROREDY 2}[ ®,,(0,0,y) dw . (208"
£=1 0

The factor of 2 is used to account for the fzect that Eg. (205)

represents a2 doublesided spectral density. After summing

Ec. (205) cver the three components and carrying out the inte-
graticn over w, one chbtains
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fﬁE;MWW4*(tu{7ALHV'WAQ&JX S e e e e e X
- 143 sin? ¢, + 2 cos? ¢ cos3w
27 o2 2
B2 () = Cg (oug By) D D o
64 143 cos? ¢
—6 ‘ 2 232 - i
. / dw exp f.-?y— -2g2w?b } (209)
0
It may ve shown that
(]
o / G o ® exp {-umz-B/mz} = —'g‘: L -7'2 11;2 txiiﬁ“3 + % aB-s/ 2, o/ 28‘2}9@‘2&1—8 .
{(210)
With the aid of this fcrpula we re= :rite Eq. {209) in the fol-

lJowing form:

SO ——

. 1+3 sin? ¢p + 2 cos? ¢p cos? %
(v) = & B; - £2(y) » (211)

2
143 cos ¢D

where £ is the dimensioniess guantity {c.f Ref. [6]}

R N

i ) . exp{.!; ..%_J—%__} . (212)
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In the equatorial region, we have

Boms (¥) = Byyf1 + 2 cos? w £(3) ,

while in the polar regions, Brms(y) = i Bp E(y). At the ccean
surface Eg. (212) yields

£¢0) = 2.197 x 10~> v 7, (213)

where U 1s in meters/sec). A plot of Eq. (213) is shown in Fig.
8. To gain an appreciation of the numerical values of E(0) con-
sicéer the eguatorial reéion. There Brms(o) reaches a maximum
value of =1.08 x 10* £(0) pT (for ¥, = 9). Referring to values
of £(0) in Fig. 9, we find that Brms(c) rangas from the high
value of 8.64 x 20® pT for a wind speed of 20 m/sec to the low
value cf about .IK pT for a wind speed of orly 1 m/ssc. It is
of interest to observe that the nigh value of the r.m.s. fieid
is of the same order of mzgnitude as the total r.m.s. field in-
duced by internzi waves given by Eq. (170).

Above tne ocean surface E(y) decays in accordance with Eg.
(212). Figure 10 shows a plot of £(v) as 2 functior of height
abov2 the ocean with the wind speed as a parameter. The lowest
value of the ordinate corresponds to r.m.s. field levels of
about .1 pT. Note the seasitivity to winé speei of the loca-
tion of this threshold above the ocean surface. For example,
an. increase in wind speeé from 10 m/sec to only 12.%Z =/sec
increases the neight at which this thresheld level is reached
from about 400m to 700m.
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D. SPECTRA OF SURFACE-WAVE-INDUC®D ELECTRIC FIELD
COMPONENTS ABOVE THE OCEAN SURFACE
The correlaticn function among the three mutually per-
pendicular electric field components Ei, EZ s E3 is obtained
from Eq. (136) through Eq. (138), by analogy with Eq. (200)
and Eq. (201). Thus, one finds

2 2 cosl
2B 1.9) = B, %
bl 2(1+ 3 cos? ’D)
7, K 2 19(Kx -10(K)t
-[/ ak e e K By (w,a) [ﬁ(ﬁ) e + ¢{-K) e ]- (214)
g‘(’ﬁ) - gf,E) g;(E) (215)
E -
SI(L )(w,a) = cosiw-a) sin ¥ , (2i6a}
géE)(w,u) = - 31 sinw, (216.}))
(E) .
g5 (#,a) = sin{w-a) sin w . (216¢)

The temporal spectra for p = 0 become

2y~ ‘

Z
2'532(3052% oy = (= 2 )
P e 8 f aweBuo v, w. @D |
0

gz(l + 3 cos? ¢D)

Comparing this expression with the spectrum for the magnetic f
field components, Eq. (20&), we observe that the two spectra |
are essentlaily identical except for the presence of an addi-

tional factor of w"‘ in the eiectric field spectrum. Therefore,

at y = 0, the relative high frequency spectral constituents in

{E) _
¢\‘m (0,w,y)
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the electric field will be larger, and the eventual decay rate
of the electric field spectrum with increasing frequency cor-
respondingly slower, than for the magnetic field. It is im-~
portant to note that for v = u, Eg. (217) gives the spectrsz of
the individual electric field components and that the sum of
these spectra is not equal to the spectrum of the magnitude of
the total electric field@. The ccmputation of the spectrum of
the latter involves the same difficulties as mentioned in con-
nection with Eq. (174) for the total magnetic field.

After the expression in Eq. (2-30) for the Pierson-Neumann -
surface wave spectrun is substitvted in Eq. (217) one obtains

1~ 2 z
¢>(E) zC:B% cos ?D

Vu (O:Q:Y) =

2(1 + 3 cos® ¢ ?

, L
- .2:\'”7 °2g2 w 2U 2 ho""a’/z (E)

cw e < (o g“m (w.,a) eosz(_w-wo) . {218)
WO-"E/Z

The total r.m.s. electrie field is now corputed {rom the ex-~
oression

3 w«
EZps () =2 ) / @, 0,0,7) du . (219) 5
v=1l o s

Fron Eq. (216) one finds

3
. Z g‘(,s)(w,a) = 2 sin? w ,

v=1

&0
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()
- = V4
w +5/2
- - " 2
2 sin? w cos?(w~w_j dw = 1 +2sin’w
(w-w_) 5 ( o)
W _-%
o /2

¢

We then obtain

2 sn2

cos (1 +2sin°w) - ¢ 2 _a

BEES(Y) = v°C Bi)z e 0 / dv w €xp ‘-Zy—w -2c%w Y 2; .
< a(1-+3;ccsng)“ &

0
At y = 0 we can use the formula (220)
L -2
-8w
f Wt e do = 7 572
0 ; :

?

With B = 2g?5"2 this yields /% 277(@/g)®. Substituting this
in Eg. {220) together with the numerical factors we cbtain the
simple formula

‘/1 + 2 sin? w_ cos & .
(0) = 2.21 Q D U'/z pvolts/m » {221)
\ﬁ,+ 3 cos? $p

where the wind speed U is in meters/sec. Thus, the r.m.s.
electric field at the ocean surface increases only as the 3/2
power of the wind speeé, whereas the r.m.s. magnetic field was
found to have a U /2 dependence (Eg. (213)). The dependence

» the wind direcgion (zezsured relative to the vertiezl
plane containing the geomagnetic field) is weak, as wss zlso
found to be the case for the r.m.s. magnetic field (Eg. (211)}.

The particular functionzi dependsnce is,of course,a conseguence
of the assumed cosz(w-wo) dAirectionziity of the surface wave

_spectrum. A surface weve spectrum with a greater degree cf

directionality will result in a larger variation ¢f th2 in-
duc3d electric fi=ld with LA In particular, for z perfectly
unid:rectionzl surface wave traxn, the induced fieid will
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vary frem its maximum at w, = %/2 (wind direction perpendicular
to the vertical plare containing the geomagnetic field), down
to zerc for w, = 0 {or, ¥)(wind direction in the plane contain-
ing the geomagretic field). On the other hand, in Eq. (221)
the total excursion of the r.m.s. field as L7 is varied from.0
to /2 is only 73.

The mzgnitude of the r.m.s. electric fieid 2s predicted by
Eg. (221) is certainly of sufficiently hLigh level so as to be
reasurable in the absence of other competing noise scurces. For
example, for U = 10 m/sec, ¢p = 0, w, = %/2, one obtains
E..s(0) = 60 pvolis/m.

E. SPECTRA OF SURFACE-WAVE-INDUCED MAGNETIC FIELD GRADIENTS

The correlation functions for surface-wave-iaduced gradi-
ents of the magnetic field can be derived with the aid of Eq.
(132) and Eq. (201}. Alternatively, by recognizing that the
forral relation between field components and their gradierits
does not depend cn whether these quantities are indueced by in~
ternal or surface waves, we can employ the results of Vi-A, and
thus odtain these correlstion functions directiy {from Egq. {(202)
by replacing gvu by gvp;rs and suppliying the addéitional factor
E? in the integrand. In any case, thsre results

n'C’vgx;rs

[ -ikp -2y ' iK)x -19(X)t
[ cre € (w,u)lﬁp e +3(-X) e . (222)
- |

4
g The corresponding temporal spectrz are:
F
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, @ psrsteswsy)
}
! B )? 2y & -1—p cos (w-9)
= " (woj) > Zy ] dw e Bars (w,a) é( W),
g (1 + 3 cos? ¢‘n)
. (223)
3
by ¢w(0,m,y)
; 2 2 .
g % (on, B) -2y =
w e & dw gw;rs(w,a) -;:(%,w) ) (224) f
gz(l + 3 cos? ¢r) 0 i
{

Thus, the dependence on frequency of the gradéi=nt spectra is
exactly the same as that of the electric field component spectra,
Eq. (217). FPor the Pierson-Neumznn spectrum Eq. (224} reads.

(op_ B )2 2y ——Zgz 257 z/2+w
(0,w,y) = 2. D W e dw gu: fw,a) ces? h.-w )
w s 2 .-,"‘S
> lo(i + 3 cos ¢D) /"
o (225)

i The spectrum attains its maximum value at

! 5

| = 5—)”0[1+§1"5-1] . 226

; “Yrax = G ( o (226)
. For y = 0,0, = %, which is about 20 percent higher than the *
speciral maximum of the ocean surface displacenent.
) We now compute the r.m.s. horizontal-vertical gradiernt,
defined as in Eq. (186). We have
-
: .2 (HV) _
3 - cm (Y) = 2] [ 12412('3’?) +Q 23 :-3(‘9:?)-} .
- - 0
‘f.‘. -
‘a 3 ‘w? 119
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After substituting from Eq. {225), the integration over w is
carried out with the aid of the following formulae:
n/2
o 2 - I'¢
f dw C\OS (Ho} [212;12(‘7,“) + 813;13\‘\7,0)] Gw
-5/2 3
%/2
==§¥I’ [}nsﬁwcosz«ﬁ)i-skf:¢n ](xsz(wAQQ Gw f
-5/2 :
n ‘- 2 2 N 2 i
= > icos (1+2cos?w )+ i sin ] . :
(37 L % o ) f,
Ore then obtains .
GI’&"V)(:?)
[ o, (A +2cos? w)+hsin?a | © 27 & _ag2 7y
- a2 = 2 cos ¢D cos tO . @DJ P g
-§§(:(om)Eb) ww e y
{1 + 3 cos? %) s .
(227)
For y = 0 we use the integration forrmula following Eq. (220).
After substituting numerical factors in Eg. (227), the r.m.s.
gradient at the ocean surface becomes
) ccs? $p A +2 coszwo) + 4 sin? ¢. 3/,
Gnrs' (0) = 3.925 ; T o) U /m .
5(1 + 3 cos? &
D (228)

For ob = 0, ¥, = 02nd U = 10 m/sec cne finds G§§§)==53.7 PT/m.
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VII. MAGNETIC FIELD SPECTKA OBSERYED FROM
MOVING MEASUREMENT PLATFORMS

Open ocean measurements of magnetic field and gradient
spectra must invariably contend with platform motion relative
to the gecstationary coordinate system. Consequently, the ideal
spectra discussed in the preceding section wouid, in general,
not be directly observable. Platform motion may, of course,
also be introduced deliberately to increase the area of ocean
surface traversed per unit time, as, e.g., in magnetic anomaly

R e

: 3 detection from an aircraft. For purposes of analysis, it 1is
?§~;-'2¥ convenient to distingulish between the steady or systematic mc-

'y ¥dbnr|

%f ' %. tion, and fluctuations in time of the mean position of the meas-
3} K urement platform, which fluctuations are attributable to imper-
;5 ff fect platform stability. While of great practical importance, .
i %f questions 3f stability cannot senslibly be addressed without re-
‘é E course to data relating to srecific platforas. We shall, there- i
f; if fore, restricr the subsecuent discussion to surfaqe-ﬁave-inducea
= § and internal-wave-induced magnetic fileld spectra as they are
-;} mecdified by the introduction of a steady compcnent of platform
3 motion.

A. SURFACE-WAVE-INDUCED MAGNETIC FIELD ANG GRADIENT SPECTRA

OBSERVED FR0M A MOVING PLATFORM

We assuze 2 uniform velocity V parallel to the ocean sur-
face. The velocity vector V is oriented along the unit vector
51 in Fig. 3; the angle a is now a measure of the relative cri-
entation of the direction of platform motion 2rd a vertical
piane-parallel to th2 geomagnetic fieid. The incuvzed magnetic
field 1s sgain resclved along the coordinate axes £, %, &3:
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3 component 1 is resolved along the "track,"™ while 53 corresponds- .
3 to the "cross-track" compcnent. i

o

For collacated sensors the correlation function between
components vu measured in the moving platform coordinates can
be obtained from (202) by a replacement of the transverse
coordinate p in the Integrand by K.V 1. The elements of the
temporal speciral matrix are found by taking the Fourier trans-
form with respect to t:

s et Wi e 7 s bl o SRR B

: : " (ou B)?
2 L.
= R @W)(m’y) = —% __Q_p__ - )
4 E: w 143cos?¢y 3
¥ . f
° g A
S 5 ff PKe Kig G40 {W(E)S [2(0-EVw] +#(-K) SR + Y wl} . (29)
= 4 =
? ,;; ¥e shall express the variables of integration in polar form and
== ~ 3
3 Bt carry cut the integration first with respect to ¥. Contributions
Q % from the two delta functions are obtainred if
SN
=, 2 w+XK.V- agY=0 , (230a)
». ::;‘, =
Z 2 I
5 w+X.V+ QK)=0 . {2300}
E Since Q(K) = + /<g , the two preceding equations are equivalent
.3 to ¢
&
=3 ‘2l (0 + VI = Xg, (231)
- x
A;‘ E wnere
= f
A E v = Veos (a-w) , (232}
Bl ¢
i. § is the projection of the platform veioclty vector on K (see
3 g Fig. 11).
3 1 1
3 1 = 122
5 & -
7 2 =




it 2 — o
r ¥% !
:
K
3
E |
> X ;
::;: un2 §
& FIGURE 11. i
=3 ¢
f The two solutions of (231) for K will be denoted by X, and K, . ,
¥ They may be expressed in the follcwing form
3 ,
ps - _‘d_ 2 N
‘i Kl’z g fl’z(é) » (2¢3) ,
2 where the new roots f,,f, satisfy
3
“t‘g
3 - 2p2 -1) =
) fl’z + (28 1,1‘1’2 +1=0 , (234)
2
;i and the dimensionless variable § is
i g =22 . (235)
|
{ The twoc sclutions of {(z35) are
i fl(s) - 1-26 + Jl-ﬁﬁ , (236)
262
£,(8) = 128 = AN (237)
l: 262
.
E - 123
€
- o i
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- Evidently, ) t

§<F. s (238)

since only real roots are of interest. A pict of fl and f2 is
shown in Fig. 1Z.
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FPor small & one finds the following limiting forms:

/ 1 g )21 « '
£148) ~ 57 (5) =, £,(8) ~1 . (233)

w
§ ~ 0 v §~ 0

The corresponding propagation constants are

. ~ & - _& K e . (2L0)
2 V3cos?(a-w) g

Thess 13miting forms are valid for zero platform veiocity; KZ is
seen to approach the surfzace wave prcpagation constant corres-
ponding to a stationary platform, whils Kl tends to infinity.
The contribution from the latter tends to zero since the
intesrand cecays ¥ith increasing wave numbers.

¥e now consider the individual contridutions from each of
the twoc delta functions (229). 3ince & = /Kg > G, there will be
contributions from (236a} only if tne radian frequency w ralls

within the range

w+VvE2 0 |, (251) 4
or, ecuivalently, if
5 T E
w(l + 6 11,2) 20 - (2£2)

Fron (236) 2nd (227} we have

1+ 6 fl = 55 (1 + /1 - 48 (243)
and
2 - i - - A Y s
1+8¢8, =5:Q 1 - 83) . {2a%) '
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Within the range cos(o-w) > 0, w and 6 have the same sign.
Hence -

1 +6f, >0; w>0 ’

1

1+ Gfl <0; e <0 -

s ey

On the other hand,

1 +4f,>0

2
for 2il w. It then follows that for cos{a-¥) > 0, (252) is
satisfied for positive frequencies by fl and f.,,, ané fcr nega-
tive freguencies only by fl. when cos (a-w) <0, then

1+ Sfl >0; w<?9 »

p

Y
o
by
]

A
[}
"X}
€
v
Q

while 1 + 6f2 > 0 for positive and negative w. Consequently,
for w > 0 2 contribution arises only from f2, while for w < 0,

(252) has no solutions. These observaticns may be summarized
as follows:

w>0 <0
e.s{a-w) > 0 fl,fz fl
cos{a-w) < 0 f2 KOXE

Cortribucions from the second delta function, corresponding to
Eg. (239b), are ohtained if

w(l + 6f1’2) <0 .
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One then finds that tbe w and cos(a - W) regions bear the fol-

lowing relation to 1, f2:

w>0 w<d
cos(a-w) > O NCNE £,
cos(a-w) < O fl fl,f2

¥ith the aid of the preceding results we can integrate Eq. (229)

with respect tc K. Since cos{a - #) = 0 defines the boundary in

the wave number directlon space on either side of which a dif-
ferent combination oi the roots fl and fz contributes, it 3is
convenient to change the integration variable from w to 6 =

w - a. After some algebraic manipulations one finds, for

w> 0,
{ou_B)?
@g)(u,y) = -;— o_P cuw
(1-+§3c0§’¢n)
2
- 11 .a!.ﬂ__r
.[_em ‘IZ 2 JT;ce gt o?
+ ds {Gﬁ!a)ji: #(—— s}
J ) TG gy e T
: -3 N =1 '3
) p— ‘1 wz 1.
-5/2 -2y =
f - $mE
+ a g_({8t,a) v]| & £, eict(2-)x]} 5 (255)
=2 = v o a0t LE T
L -
where
( cos” gy 3 mw 1>
8 =
o
0 3 ] >31. (2136)
i
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The guantitiesz fl’ fz are functions of 6 and w, and are given

by Eq. (236) ané Eq. (237) with & = 9-3—292-5. The first in-
tegrai comprises the two contributiens f; and f, from the first
delta function in Eg. (229); in the second integrai, ccntribu-
tion f2 arises from the first delta function, whiie contribution
fl arises from the second deltz function. The-latter is
asseclated with the "inverted” spectrum $(-E), and the time
domain dependence exp - 1Q(E)r. Thus, had we omitted this

tern in our original representation, i.e., used oniy the

coxzplex expoaential representation for the correlation Tfunction
of the form %(K)
result.

exp 12(X)t, we wouid have obtained an incorrect

Ir the limiting case of zero plztform velocity we find, from
(239),%that f1 + « while fz -+ 1. If the wave number spectrun
v(K) in Eq. (2B5) decays with K, then cnly the terms involving
f2 give nonzero contribuiions. The two-integrands in Eg. (245)
then become identical. Since em -+ 0 as V » 0, ore can write Eg.
(2%5) as a sircle integral between lirits of -¥ and =. The
whole expression then reduces to the spectrun in the stationary

frare of reference, given in £5. (204).

The expression for the gradient spectra follows from Eg.

(245) through a replacement of gv‘ bv Zguu -rs and multiplication

. < - 2 _ u:
of each term of tne series by Ki == 2'
2
(‘i) (l. v) = T (Ouo Bc) \s
vusrs ¥ 2 e
? g2(1 + 3 cos? ¢p) ,
r 5 & ~
I + s (B0) 2 e( = To> e+u)
- 8 =1 26.@; 1 :
_ o]
-2 w
r  _-a/2 2 ¢ 22:2y'§- £ -2
+ f + }E: L &Hﬂ-?—i:%
! j as gw;rs(e*a,u) 12 -’i"_-(-l)"l [g o281t (2-£)
5/2 = g=1 =0 g (2&7)
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The interpretation of the various contributing terms in Egs.
(247) and (2k5) is facilitated if we assume a unidirectional
form of the surface wave spectrum. For definiteness, assume
that the dependence of ¥{(E) on K is identical to that in the
Pierson-Keumann spectrum, viz.,

9
~%
¥® =T 5 () i /K07 sx-x) .

o mvmmm‘ﬂwmm
S

The additionzl factor cof ®/2 has been included to ensure the
same rormalizaticn over the ccmplete range of w as implied by
the cos?(w - wo) directional dependence. We then find that the
nagnetic fielé component spectrum in Eq. (245) becomes

® P u,y) = o p
16 (1 + 3 cos? ¢p)
2
{ emp-—{zyfé—fé-+1¥fd.ﬁf4le} =
By (W) —= - 3 Iy -el>5,
[2s /T, - 1] £5
2 — -— —
/ r g 2 -{Zy%fl+282w *u ’f,-’}
- 0\ gvu(‘do,u) u - — ‘
: l?v cos(x, - a) ot |28 Ty -~ 1} fg
(x)z -—p e 3
exp-—{Zy;:fi-+;@?m Ixzfi}' x
\+g‘m(wc—s,a) & 5 l“’o - af < 3,

26 /T +1j £
|26 /5 +2i 5 (248)

where U(x) is the unit step function, and § ané the r, are to
be evaluated at the same value of w (viz., w, or w - %) as the
corresponding projection factor gvu(w). The proper combination
of contributing terms in the spectrum evidently depends on the

relztive orientation of the platfornm velcecity and the direction
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of propagation of the surface wave. Thus, if Iwo - a]| is greater
than 90°, only the first term in Eq. (248) contributes. Within
the two forward quadrants, Iwa - a] < n/2, there are two contri-
buting terms, the first of which vanishes for V cos(wo - a) > g/hu,
i.e., when the projection of the piatform velccity vector on the
surface wave propagation vector is greater than one half the
group velocity of the surface wave (recall that vg = du/dX =
g/2s). The last term describes a pure motion-induced effect,

in that it tends to zero as V - 0. This follows from the fact
that as V » 0, fl + ., Wnen the platform trajecto?y is ortho-
gonal to the surface wave motion, i.e., ¥, -as= * x/2, then

fl + o, while f2 -+ 1. Thus, cnly the two terms comprising f2 =1
contribute, and the spectrum is the same as obtains in a sta-
tionary reference rrame.

When the surface wave spectrum is not purely unidirectional,
Egs. (2h5) and (247) have to be evaluated numerically. & lirmited
number of such calculations has been carried out for the Pierson-
Neumann spectrum with a cos?(w - wo) directional dependence. The
results are snown in Figs. 13 and i# for platform motions of 100
n/sec (typical aircraft speeds). Figure 13 shows spectra of the
horizontal magnetic field component (measured along the track)
for three values of wind speed. Figure 132 gives the spectra.at
50m and Fig. 13b at 100m above the ocean surface. In all cases
a = 0 (aircraft flying 3ir the piane containing the gecmagnetic
field, see Fig. 3), ¢, = 0 (equatorial zone), and w, = 0 (wind
direction along the trzck). Figure 14 sho¥s the results for the
HV gradient, 1.e.,¢12;12. Again ¢, = 0, a = 0, and ¥ = 0. If
we take the senslitivity of an "avesrage" superconducting gradlo-
meter at .1(pT/m)?/Hz,then a magnetic fieié gradient incuced by
10 m/sec wind waves 1s barely detectable at 5Cm above the ocean
surface, and not detectable at 100 nm.
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B. INTERNAL-WAVE-INDUCED MAGNETIC FIELD SPECTRA OBSERVED

FROM A MOVING PLATFGRM

while the formal procedure for finding spectra of internal-
wave-induced magnetic fieids and gradients as modified by plat-
form motion is the same as just deseribed for surface “aves,
the detaills are somewhat different. Thus, one can nc longer
obtain an explicit solution for the roots of the augrented dis-
persicn relations. Moreover, a summation is required over an
infinite number of modes.

We shall not start with the general relations Egs. (151)
and (180), but with the special form Eq. (157) together with
the corresponding expressicn for cradients. We then have the
following representation for the component spectra:

27

2 ©
anB ) 2Ky
&V w,y) = / a g, u)/ %e
.L+3c.,s ¢D 0

Z 2 | TGS ] + I(K,'.:ﬂ)&{ﬂn-r_}_',;-_\_’im]f ) (219)

It will be convenient to change the variable integration from
wWte g =w-a+ 5. Eguation (249) may then be recast to read

. Z 1‘;1 Kt (!()3 £W(K,c,8)6 Q_#KveosBw] + nw(x,u,B)G[Qn-KVcos&w]f,

" (250)

where
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EW(K,u,B) = gw(a"B-ﬂ,u)I(K,mB-n) + g\m(u-B-t,a);(K,a-B-w) s (251a)

nvu(K,a,B) = gvu(a+ﬁ-ﬂ,a)I(K,u+8) + gbu(a-Bdﬂ,u)I(K,a—B) . (251b)
Equation (259) is of the same general form as Eq. {(E-138) in
Conseguertly, the result of integrating Ea. (259)
with respect to K can be ottained directly from the expressions
for the towed spectrum of the vertical velocity of internal
waves, as given by Egs. (E-154) and (E-155). Referring to

Eq. (E-154), and replacing j(K,a+x,8) and j(K,c,B) with
Evu(K,a,B) and nvu(K,c,B), respectivaly, and finally multi-
plying the resulting exprcasicns by the constart factor irn

front of Eq. (250), ylelds

(ougB)’

<b(v)(m,y )s
Vi 1+3cosz¢D

(3)
2| € (e8I R (k) € ng (a2 (el ) e Y
j{da 2 +
0 n

(Kn)+‘]cosﬂ][u<n]z [VCGSB-V@( Kr(:) )}[Kr(‘a) 32

I'v
T an
(251) -
1o 1 i 3is333 fr
which is valid for w > N __ (Nmax the maximum V3is3lZ frequency).

For w < N_,_ we employ Eq. (E-155) to obtain

2
{ou B )
&V py)= —2B .
s 1+3cos%¢y)
(2)
/2 ) -2x (3) (3)yoe s (3)y 2% Y
/dsz E (S ®REIR ) 5 ny 06 0BG (6 Ak, ) &
, & [ (<, #Veos81lx, 1’ " [VeosBvg ()30
(n)
8 €3]
2 rax (2) (Dyger (D) o250 ¥
2.2 / L Wl X M ' MEA (252)
)]
1 1 3/ gt Y#Veos8 | 1" ]
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f? The four classes of roots, x_, xé‘), réz), xé3), entering into %
; these expressions are delined in Ecs. (E-151), (E-152), and
5 (E-153), ard a graphical construction to estimate- their locz-
é? tion in the wK space 1is shown in Filg. E-3.
’{5 An exact numerical evzlvation of Eq. (251) and Egq. (252)
{?5 would be rather difficult. Fortunately, for the case cf great-
.3 est interest, viz., for platform velocities much larger than the
maxinur internal wave group speed and w > Nmax’ the spectrum carn
7 be acproximated by a fairly simple asymptotic expression. This
'g asymptotic approximation 1s discussed in Appendix E. Based on
i the same justification as presented in the discussion foilowing
fix Eg. (E-155), the asymptotic form of Eq. (251) beccmes i
L (V) . (0110 BQ)
@, (w¥) ~
L 4 /2
= A 2w e e 0 Gan)] L L 200 2@ (253)
% :x © vy -3ty p ey - ? o n' 7 ) -
3 = 1] : i
g where '
i K = w(Vcosg)™ ! .
‘% The closed form of the last sum is given in Eq. (160), or, in
-5
. tho case of a deep ccean, by Eq. (161). Substituting the latter
in Eqg. (253) vields
V) (Guo Ep)z
QW (k‘,}')~
(1 + 3 cos?® o)
2 t]
1 ‘J/ - %»72 t zm, 1
-1 asfe,, (au8) +n (Kea,8) | K yEGY e & . (254)
) -
Suppose we now assume an isotropic excitation function of the
form I(X) = CK'P? . Then Eg. (254) becomes 5
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oV (y,5) ~ —C P dBE (a,8YK e f yN¥{ye &',
vi 2(2 + 3 cos® ¢pw -

(255)
where

Ew(u,B} = gv“(a'l'ﬁ—r,,a) + gw{u-s-n,u) . (256)

The expressions for the spectra of magnetic field gradients are
obrained from the ccmponent spectrra by the replacement of the
frolzetion factors gvu by ngu;rs and multiplication of the in-
tegrands by the squares of the wave number. Thus. the gensral
expressions for gradient spectra.ééz)rs(w,y) foiiow from Eq.
(251) and (252) by deleting the factors [« }’, [x")]z, [K ’}z
appearing in the denominators, and replacing E va by 25

and 2n s> respectively. Tha latter are defined by
AUTES o]

VU 3TrS

T A NARY 52
o it N vt ¥ (2

Eva;rs(xsﬂ,ﬂ) = ggu;rs(u+ﬁﬁt,ﬁ) i(X,atf-) + gbu;rs(u’e"’a) I(K,o~8-7) , (2572)

s dhiiatiie

nw;rs(K,u,B) = gw;rs(cifs—t,c) IK,atB) + gw;rs(u-ﬂ-t,a) I(K,0-8) . (2575}

In particular, the asymptotic form of the magnetic field gradient
spectrun is

{ou B ¥V
4\&?1.8(&,3!)*- L
’ 21 + 3 cos? ¢D)
n/2 .

zwi
. % Jf ds[gw srs(Ks0587 + nw.rs(!!,u,c)] Ke f 7¥¢GEY e ay'.  (258)
0

In the special case »f an isotropic internal wave excitation func-
tion with power law depsndence on wave number, this reduces to

138




: ,
ppeeneni s s R

WL

i3

11} é

5

‘apastdt e N

ITPRRMA
L vniad omrn s smpisub v

4
t Y

Aha gl g s

,,.
. .
aa g Y &

AEU TR/ A NSRS

Ty
L.‘l.
A

s g e paR SRy

Asirea s s e

~

L2 /2 0 .
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VTS (1+3cosz¢D)u) > TS 7.
(259)
where
giu;rs(G;B) = gv“;rs(a+8-!,a) + gﬁu;rs(“°8’!’°) . (260)

Since typicaily the horizontal group velocity of internal waves
is on the crder of only a fraction of a meter,sec, thz asymptotic
expressions for the spectra, Eqs. (254) (255) {2%2) and {259),

are valid at falrly moderate platform veloclities. It is Iimportant
to niote, nowever, that these expressions cezse to be valid in

the irequency range @« < Nmax’ even for fast platform velocitiles.

Eguations (255) ard (259) were evaluated for an exponen-
tilally stratiiied ocean with the same parameters as employed lIn
Chanter VI. The results are plotted in Figs. 15 and 16. PFigures
15a,b,c show the spectra of the hcrizontal component of the mag-
netic field along the track of the platform motion. For compari-
son, the spectira ¢f the surfaceswave-induced norizcental magnetic
fielid component along the track arz2 incliuded. In &1l cases
¢ = 0, a = 0. The internai-wave-induced magnetic field ccmpo-
nert spectra were cexzputed for the two extreme vaiues of p.

Figures 16a,b show plets of the horizontal-vertical gradi-
ent spectrum, again for o = O, ’D = 0, If we take the gradiom-
eter sensitivity equal to .1(pT)2/=2Hz, then at a height of SOm,
detectable internal wave levels appear to be attained only at
frequencies below about .05 Hz.
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APPENDIX A
SMALL-AMPLITUDE OCEAN SURFACE WAVES

Here we present a concise account of the theory of small-
amplitude surface waves that is relevant to the computation of

induced magnetic fields. For a2 more detailed treatment the
reader could refer to [11] and [12].

Quite generaily, the vertical displacement n(p,t) of the
ocean surface may be represented by the Fourier integral

~ilgp
n(g,t) = ﬂ e lL{T - F(g..l_,t) dzg_cT . (a-1)

e ad

In the coordinate system adapted herein, y is the loecal vertiecal,
the mean vertical displacement of the ocean surface is coincident
with the xz plane, and y > 0 defines the region above the ocean.
The function F(kn,t), just as a{p,t), provides a kinematic
description of the ocean surface. Wwhen the surface displacemrent
is modeled as a spatialiy homogen20us stochastic process with
Zero m. an, there can be no correlaticn between F(g&,t) and

F(g;,t) unless g% = 5&. Formally¥*, this fact may be expressed
as follows:

Fig,ty) F*(k,;,tz) > =5 (kf,ty,t,) 80k - K7) (a-2)

—
These results can, of course, also be phrased rigcrously in
terms of the Stieltjes-Lebesque integral (see, e.g., {131).
Here we avoid such mathzmatical refinements.
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With the correlation function of the displacement denoted by

R one has
nn

Rﬂﬂ(g'l-‘eZ’tl’tz) = <ﬂ(p ’tl) n(£23t2}> P (£-3)

Thus, (A-2) in conjunction with {A-1) yields

[ i . .
R n(@stysty) ‘ﬂ e Spnlptysty) dkp - (A=)

The quantity Snn(gT,tl,tz) is *“he spatial cross-spectrum of the
water displacement. 1In general, it will be a function of the
time reference points‘t1 and tz. If we also suprose that the
stcchastic process n{p,t) is stationary in time, then Snn is a

function of tl-tz = 1. We then have

—Ikpp
R0 = ff e T s 000 (a-5)

-l
The spatial cross-spectrum snn(gT,r) has several symmetry prop-
erties. Thus, from the definition (A-3), we have

Rnn(-g,"'l') = Rnn(g,f) - (A‘G)

By virtue of (&-5), Snn(gT,t) must possess the same symmetry
property in ET’T’ viz.,

Spn(EpsT) = S (<kp-T) - (&-7)

In particular, Snn(g?’o) = Snn(-gT,O). Also, since Rnn(g,t) is
real, (A-5) requires that

Snn(ET,r) = S:n(-gT,r) . (A-38)
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Clearly, (A-7) and (A-8) together imply

¥*
Syl T) = Spalep=1) (8-9)

o

Thus, >rm(0,1:) and S rm(gT,O) are real functicns. The latter
will be referred to as the spatial spectrum. When integrated

over the wave number space l_zT, it gives the mean of the squared
deviation of the ocean surface at any point p:

-

(n*(,t)> = R (0,0) = ﬂ S Ui 0) &, - (A-10)

e

It may also be shown [13] that Snn(—k-T’o) > 0. Another quan-
tity of interest is the temporal cross-spectrum °7m(£"")’
defined by

® dut
<bm(g,m) =/ e Rm(_g,'t) dar . (A=11)

By repeating the reasoning leading to (A-8) and (aA-9) one
£inds that q;nn(g ,w) obeys the symmetry reiations

*
¢nn(9_ :u) = ann (_D_ ,-(D) . (A-12 )
@ (p,w) = g;m (p,w0) , (A-13)

In particular, @nn(g »0) and d)nn(o,w) are real functions and
°tm( 0,w) > 0. The latter quantity will be referred to as the
temporal spectrum of n(p,t). Its integral over freguency yields
the statistical mean of the squared displacement n(p,t), viz.,

m*(p,t)) = %f@(ﬂ,u) dv . (&-14)

-00
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Thus, for a stationary and spatially homogeneous stochastic

process, the mean of the squared displacement <{n® may be com- - i
ruted either from a krnowledge of the spatial or the temporal
Spectrum, i.e., via formula (A-10) or (A-1%4).

;..,‘
vy
Xy

The preceding relations are purely kinematic in that they

LSS T
Seadbipte i

i
HANIY S

deal only with the descriptidn of the ocean surface displace-
ment per se, without an explicit reference to the velocity
fields associated with such a displacement. Usually, it is the
surface displacement alone that is subject to direct measure-

5 ments. Thus, an empirically determined surface wave spectrum
P (D,w) m2y be engendered by linear or nonlinear (ldarge ampli-
tude) surface wave velocity fields. From the point of view of

an oceanographer gathering empirical data on surface wave ‘
= statistics, the precise dynamical description of the velocity -
; fields velow the ocean surface may be of secondary interest.

i However, for the purpose ‘'of computing spectra of magnetic

i A fields generated by ocean currents the aceuracy of the adopted

dynamical model is substantially more important, since the
; induced magnetic field is proportional to a volume integrai

Q

ver the velocity field. Because no generally agreed upon

; = theory describing nonlinear surface wave phenomena appears

,; § available, ve are forced to rely on the usual crude linear

5 model, which, strictly speazking, holds only for surface dis-
3 placerments that are infinitely small. Thus, even though we

- o 3f shall express the spectrum of the velocity potential giving

4 4 rise to surface waves, and the resulting magnetic field
spectrz, in terms of an "arbitrary”™ ‘bnn(g,w) , the correctness
of the results can certainly be no better than the accuracy of
the underlying linear dynamical model. In other words, use of
more refined models for the temporal (or spatial) spectrun of o
surface wave displacement in the formulas for magnetic field '
spectra will not necessarily improve their accuracy.
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It is generally assumed that the velocity field giving
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Y=
which, together with the incompressibility conditicn, gives
Vi¢ =0 .
One fundamental approximation .nderlying linear theory is that
the ocean surface is nearly flat. For a deep ocean one must

have ¢ - 0 as y »+ - », so that the solution of the Laplace
equation is

o0 --— .g
é(p,y,t) = _/] ek'ly e o Flkp,t) dzl_s'T (A-15)
where -«=<y<0.

If the surface displacement is sufficiently small, F(k,,t) in
(A-15) may be related to F(ET,t) in (A-1). Thus, for small
dispiacements

3% ~
W|y-0 W

and with the aid of (A-1) and (4-15) one obtains

* Flipt) = kgR(Kgp,t) (A-126)

where the dot denotes the partial derivative with respect to
time. Inserting this in (A-15) yields

- -ikp  Fg,t)
¢(2,y,t) = [[ ekrv e ° —'}I,:r—- dky - (a-1T)
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Finally, with the aid of the linearized momentum equation at
the air-water interface one can cbtain a differential equation “’
for F. Thus, under the assumption of constant pressure and

that capillary® waves may be neglected, one has

or, equivalently,

32 8an _

After substituting (A-17) and (A-1) in the last relation, we ob-
tain

Flig,t) + kyg Flp,t) =0 . (a-18)

Aside from a ccnstant (independent of time), which we set equal
to zerc, the general solution of (A-18) is

0t _ -int
Fkp,t) = At (kp) e + A (kp) e > (a-19)

where Q is The dispersion reiation for deep water surface waves,
2 =+7kg

s (2-20)

+ - -
and A (gT), A (gT) are the two constants of integration. In
terms of these two constants the displacement and the velocity :
potential are !

3

The wavelengths of capillary waves are too shcrt
to be of interest herein. ;

152




5}:'?3 A LD

% 13 Ly AR AN T

RAbmAak L
.

s

Lyt S g
¥ a1

AN
Y

ST

N R VL s A T TS0

¥ a
NS

L{;

PRI

5 n,
rr el

[ 7L
e

Ly

.
STy

v }...‘-’;ﬁ'l,' gt Fihi
S Aidhli bk

< f.q& AR
i i

)
Llans

et

Ry

TN/
A IRE)

AN
ANAHY

g A

)
il

" ~
AT

AP d

I

R e e T e

- it ﬁk 2
np,t) =ff e A e +A (lr ) e k| (A-21)

“ Ak ep 1y A -1t
¢(p,y;t) =ﬂ e ek'Iy -—i%[f(l_ar) e =-A{k) e ]dz‘iT. (a-22)

-~

Taking the gradient of (A-22) gives the velocity field V(r,t):

¥(z,t) =ﬂ o e V(.v,t) %k, (a-23)

-
where

g - e LA e - .
.Y(liT’y ’t) = e mﬁr A (__k_r) e - A (i_ﬁl\) e (]_{r + izo KT). (A-214)

¥e should now like to relate the statistical averages of
the spectral amplitudes A+ A~ %to the spectra.cbl angd S *m in
(A-11) and (A-5). The correlation function of F(kT t) in (A-19}
in time-wave number space is

(F(l_gr,tl) F’(}_r.i.,tz) >

e, - ig'c, -ift, + it
—<A(51.)A(51,)>= 2 +<A(1r)AQc,,.)>e
-ift, - 10't, iot, +19%, . 25

+{A (gr\A(lf e + ¢t (5T)Alg,1.)>e

where 2 = Q(kT) ané Q' = Q(k&) .

In: order that this expression reduce to the form
snn(gT,tl-tz) 8 (kp~kn), as required by a sratially homogensous
and stationary process, it is necessary that the fellowing
reijations hold:

ETARC L iy B K 5 . et e -

[ SR



atag) B> =3 vty stgkd (a-262)
<& (kp) K"(l_s,'r» =%¢'(_151,) 8(krkr) (2-260)
<t D> =y Aag)> =0, (A-26c)

where 9 and ¢ are two as yet unspecified functions of k Eqp-
With t,-t, =1, (a-26) inserted in (A-25) vields S (kn 1)

——

G(kT-kT), hile the explicit form of the spatial cross-spectrum
in terms of ¢ and ¥ becomes

-t
Q%?t) [¢ Q%Q e *-#'Q%Q e ] . (&-27)

The functions ¢+{3T5 and é‘(gT) mmust be compatible with
(A-8) and {(A-%). Tne first of these recuires that,

o ) = ¥ (i)
V) =5 (k)

while according to (A-9) %  ané ¢ must be pureiy real functioas.
Consequently. ¢+(ET} = ﬁ‘(-gT) ané the spatial c?oss-spec;rum
may be written in terms of the single real positive function
¥(k;) = ¢’ (k). Ve then have

th

=1 il °im] (a-28)
SinEp) =3 k) e Fule |

and the correlation function of the displacement becomles

- - -l *p itk -3
Rone,1) = %ﬂ e T [:jw(l_f,r) e +p(k)e ] kg - (2-29)

kD>
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We now obtain the relationship between #Q(_T) and the temporal .
cross-spectrum. Taking the Fourier transform of (A-29) with

respect to 7 yields
o -ikop
P,w) == _[[ e ihr - [&Q‘_T) 6{w-Q) + #(-_lgr) 5(w*Q)]d2§',r. (2-30)

It will be convenient to Introduce polar coordirates kx = k‘I‘ COSW,_

kz = k.T sinw, x = p cos®, ¥ = psind, and emplcy the notation

*(ET) = *(kT’w) ’
W(-ET) = ¢(kT,w+1) .

Recalling that in the dispersion relaticnship kT has bcen de-
fined only for positive 2, viz., @ = /kg& > 0, we have, for v > 0,

2
-12_ o cos(w-9) \
®(p,2) = %’-’ gre € 0(%'-} i (a-31)

For w < 0 only the second delta function in (A-30) contributes,

ané is tc be evaluated at w = - /E_z. One then obtains
£
o 2
. 250 .ng_ p cos(w-8) /2
Q\g,w) = - ‘gz— s e ?(E,M) - (A—32)
)

assuzing that § is defined for all 9 < w < 2 7 as a single
valued function, i.e., ¥ 21,0 = ?%,2: > the periodicity

of cos{w-8) in w permits the replacement of the limits of in-
tegration by 612'*6, where 6 is zny real quantity. <Conseguently,
changing & + 7 to w in {A-32), one obtains

.{;)2
2 i—p cos(w-9) 7 2
®lo,w) =~ 2_’:_;’_ dwe t(gs—-,w); w<0 . (2-33)
0
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Comparing (A-31) with (A-33) one observes that the symmetry a
g corditions stipulated by (A-12) and (A-13) are indeed satisfied.
Setting p = 0 in (A-31) and (A-33) we find the spectral density:

el
P(0,w) = 2—;—;21-3—/2 dw #(ng—,v) 3 joj<= . (a-3%)
9

In =most discussions of ocean <urface wave spectra only the

positive frequencies are mentioed explicitiy. As long as the
observation piatform 1s staticrary with respect to the wave mo-

tion, the negative frequency region may be ignored.

However,
when the observation platform is moving, the spectiur measured

with respect to the platform will undergos 2 Dcppler-ljike trans-

lation and distorticn involving positive and negative frequency
coastitients of ¢{0;w). This 1s discussed in Chapter VII, and

in sppendix E iIn connection with towed iInternal wave specira.

An anaiytical form of the sea surface displacement spect

that has received some experimental confirmation is the Pierscn-~
Reumann spectrum. (Kinsman {21], pp. 386.) 1In terms cof the amplii-
tude functior A? 2mployed by Kinrsman, p. 399, Eq. 8.Lk:15, the
functional ferm of this spectrum is

-~ -6 . P
Cx exp i-28% 2}cost("a—wO);mif_m<-»,-~;—<u-tf <z

o 2 °?
A2 {w,w) =

- N oo & Mo RS ARG PCH I AT
ol -&%u.- - e '

0 ; otherxise .

LM gie,

(2-35)

where U is the wind speed, L the wind direction. We have
replaced ¢ anéd 8, used by Kinsnan, with Q and w-w_, respectively.
The constant C has the numerical value [Kinsman, p. 390]

1

- b & £
I e GamaLabieh

Z C = 3.05 msec™ | (A-36)
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The quantity @y is the low-frequency cuteff which is determined
by the fetch and wind durztion. When wy = 0 the sea 1is sald to
bve fully aroused. Da2a Tor determining wy for a given wind
speed fetch and duration =ay &= fourd in Kinsman, g. G6. Next
we should like to relate A?i{u.w) of KXinsman to v(-‘i’g—,ws

In our notation, Eq. 8.3:6 on p. 380 of Kinsman for the correla-
tion of the ocea2n surfacz dispizcement reads

1 e ae) cos e -
'ﬁm(O,T)—z‘[e {]:'.‘i(u,h) mei cos ot G . (2-37)

Or the otner hané [see (a-11)],
& -
.1 a5
Rm(O,T} = 5’[“0’&) e do .

—lD

Substituting from (A-34) one obtains

20 - 25
3 T 2
y= [ e o
R (0,) _] J_éL > dm/ aw "(g ,-.e)
-3 0

Wl

fif "“’(m—,w)dw}coswtdm.
E b3

00

Coxparing the last expression with (4-37) one has

3 2
22(w,wW) = Ba” ¢("’— ,w) .

e

g2 g

Referring to (A-35), the explicit expression for ¢ is

%—w’;gz exp {-28% U 2} cos?(ww ); &y <w<®

Sy

t - - -
\E 0 ; otherxise , —3 W¥-¥,<3
(2-38)
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The most uncertain feature in the Pierson-Neumann spectrum is
wave number directionality.

Q;ﬂv

The available data appear so crude
as to be compatible with a variety of functional forms.
man [11], p- %Gl.)
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o APPENDIX B

EVALUATION OF CERTAIN CONVOLUTION TYPE INTEGRALS
INVOLYING THE FREE SPACE GREEN'S FUNCTION
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APPENDIX B

EVALUATION OF CERTAIN CONVCLUTION TYPE INTEGRALS
INVOLVING THE FREE SPACE GREEN'S FUNCTION

Combining (48) and (47) we have

R o by 4

ﬁx'/dza Kz(x,y,z;x',y',z’) wy(x',Y',Z') s

¢, (x,y,2) = Bozjdy'

where

K, (x.y,2;x",¥",2%}

1 - -5
=— j(dx"/dz" [(z—x7)? + (2-z2")2 + y?]
r4.d

" G]&’(I"’o’z";x' ’y' ,z' )

and G,. is de

K

ned in (26).

We shall employ the Pcurier integral representation of the
free srace Green's functicn Go
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9,
wﬁ Eiﬁmwmwmm -

G (x,y,z;x"'.y',2") = 2 [(x-x')?2 + (y-y*')2+ (z-z')zil5

o3 J,'dgjf'd; e
(27)? ~=

where

We then have

x

kq ="gz + 2

; -
> [(x-x™)2 + (2-27)2 4y23
2 f

5

(2532 ==

Also (see {27))

>

cgar e~18(x-x") -ig(z-z?) e “kpl¥l

NT™

2k

T

-1 . -1
== lp-r]

~1E{x=-x"'}) -ig(z-z') e-kT]y°}"|
2k, ’

(B-3)

(B-4)

(B-5)
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?
? 1 3 -1
— G (x",0,z"3x',¥",2") = — [(x"-x")? + (z"-2')2 + y'2]2
oz" b 2% oz"
o
—FEV(xP—x') 7' (2N ? <k i
g ,[/ agragt e 2ET(XTET) 32T(R2T) (g0 oTEply
(21)2 - 21‘:.'1. ;
(B-6)
After (B-5) and (B-6). are substituted in {B-2) the inte-
s gration over x" and z" ylelds a product of delta functions with I
- the resuit ’
A
2]
2
;‘E Kz(x,y,z;x',y',Z')
=
f e =
1 lfdﬁdcﬁdg'dc'
P (23)2 ~= —=
g - SFEty? _3 I>1opt - =} $
k| e~18x + ig'x' -igz + ig'z (-iz") e kTiyl Lo AR §(E-E') 8(Z-T")
Integrating with respect to £', z' yields I
Kz(x,y,Z;x',y',Z')
5: -
_: = 1 ﬂdgd; e-ii(x-x') 'it(z’z')(—-i;)e__.k’l‘( |Y!+]y'l)
(27)? e 2
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H
i
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Since y' is always non-positive, for y > 0
Iyl+ly*'l = y-y* = |y-y'! .
On the other hand, for y < 0 s
Ivl+ly'l = -y-y' = —(y4y') = ly+y*] .
Hence,
K, (x,¥,25x",y",2") =
1 .AV.dgdc e 18(x-x") —dzl(z-z")( 1.y o Kplywy'] (B-7)
(25)? o 2 )
ke
Let
£ = k? cos w
= Epsiaw
x~x' = |p-p'| cos 8
z2-2® = |£f£'l sin 0 .
Then (B-7) becomes
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K, (x,y,2;x",¥",2' )

® 2
5 "

.—.-"“_;] ak,, e~k lyHy° l/ aw sin w e Heple-p'l cos(w-e) (B-8)
(2%) 0

We now focus on the inner integral

2%
I-= / dw sin « e“ileg-g’l cos (w-0)
0
n-0 )
= ~/ dw' sin (w'+0) e lleg_-g_'I cos w'
-!-e
2%
- o )
= j[dw sin & + 0) elkqplp-p'| cos w , (3-9)

v

where we have first changed the variable of integration to
W' = w - 0 - % and then used the observation that the inte-
zral of a continuous periodic function taken over a full
period is indeperdent of the location of the integration

interval. Some further rewriting of the last expression
in (B-9) gives
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2% |
-i(w + 0)\ ik lp-p'lcos w
I=J dw ei("+e)-e ( ele——
0 21
- s w _iw
= — e16 dw € Tlp 2! leo e
21 0
2%
-16 -p* ~-iw
+ & fd' elkplo-p fcos w
a1
16 * *
. e w2 L. ikplp-p | cos w i(w - %/2)
21 o
-16 ¢ ik, |p-p' |cos w, _iw
+ = aw e TR ‘e |
21 Zox
18 2%
=- € 31’/7 aw elkple—p'l cos w _i(w - w/2)
¥
o-18,1%/2 . < ru L .
33 + f aw eikmle—p'| cos w i(w - x/2)
e 0
<8 2% )
piis —at . _
31 =-1sine] aw eikplo-p'l cos w (v - %/2)
i 0
e ‘-
EE = - 2x1 sin 8 J (kylp-p'}) >
:
, (:
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where in the last step we have employed the definition of the
Bessel function of order 1. We now substitute this result in-
to (B-8) to cbtain

- - Fv!

Kz(x,y,z;x',y',z') = ii_u/ dkT e leyﬂr IJ_= (leg'B'l)~ (B—].O)
2% =

o

From a well-known formula#¥*

® -n " 2 2 n
/ e-ax Jn ( Bx ) dx = B [ a + B “a]
e Va? + g2

Withn =1, a = [y¥y'], B = lo-p'] ,

sin @ (V]p-p'[2 + (yiy')? - lyey' )
Kz(x,y,zsx‘,y',z') = - .

27 l.e-g'l\/lg-g'iz + (y3y')2

We now express sin@ in terms defined following (B-7), and
write the inal resylt

¥ S, Gradsteyn and I. M. Ryzhik, "Table of Integrals,
Serles and Prcducts™, Academic Press, London (1965) p.
797 formula 6.611.
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~ ‘ Kz(x,y,z;x',y',Z')

-

3 1 (z-z)le-pe' 2+ GFY2 - Iy®'D

b :, T — ——— ’ (B—ll)
e 2% le-p' 12 Hfle-p'|? + (y¥")?

QE E: where y¥y® pertains toy > O and y < 0 , respectively.

g 3

53 _; In a similar feshion, we evaluate Ky in (57). Substitu-~

' ;ﬁ tion of (48) in (56) yields

K&(x,y,Z;X',Y',Z')

1 " g )
T o ./dx".[dz" — [x-x")% + (2-2™)% + 321 Gyix",0,2";x",¥%,2").
' - -0 y

PO| b

9
(B-12)

B Since only the case y > 0 is of interesc, we obtain, with the
3 aid of (B-3),

1 2 -3
— = [(x-x")? + (z-2")2 + y2] 3
2% 3y
=-2 j[dgd; e 18(x—x") -1z(z-2") ok (B-13)
(232 - 2




Also, by omitting the factor (-iz') in (3-0) cne has

D v—

Gs(x",o,:“;x",y',z')

.2 ggragt e i87(x"-x') —Art(2t-z'l G |yt | (5 5n

out, so that by analogy with the previcus case, con2 obtains

(zm)? J 21
| |
}
Substitution of (3-1%) and (B-13) in (B-12) again permits the %
resulting delta function (2%)? 5(z-3') S(E-£') to be integrated §
!
j

.
1 -3 - ! - -2t TN I A
K_;(I,y,:;-.',Y',Z') = - dEd; e 1&(1 X ) i;(z Z ) e 1‘?\} J ) ,

-—® kT

(8-13)

¥here w2 have set 5y + |y'| =3 - 7' since ' < 0 while y > 0 .

Chznzing to polar coordinates (via the relaticns folicwing
(

© 2%
-~ -l -ty ¥ 3 23 . - i
K (x,7,232%,5",2") = ]/.dk: e k?(y ¥'y 1 dw e*ﬂTIE_E_ICGS(ﬂ g) .
N J - (2z)? i
G {
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The inner integral is obviously indepengdent cf 8 and, in fact,

defines 2x Jo(kT[gfg'I). Conseguently,

1 -l Yy 1 . -~
=-=1 dk, e (-7 I lemlo-p"1) . (B-16)
Using the same formula as in the evaluation of (8-10) we
find
Ky(xsy’z;x':y"z') =z - "217 E(I“x')z (y'y')z - {3’3')23 > (B“l.l-)
o

as wWas to be demcnstrated.
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APPEMDIX C

FORMULATION FOR ELECTROSTAYIC AND MAGNETOSTATIC FIELDS
IN TERMS OF THE LORENTZ POTENTIAL
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APPENDIX C

FORMULATION FOR ELECTROSTATIC AND MAGNETOSTATIC FIELDS
IR TERMS OF THE LORENTZ POTENTIAL

Here we present the derivation of the expressions for the
matrix elements given in Eq. (70).

VXE=0 {C-1)
0 ;3 y>0 (C-22)
Vx§_=3
CE+oVxE ;y<0 {C-2b)

0 ;5 ¥y > 0
VxVx§-=l
~u,oVé + u o(V x B )

Vx©¥ xA=V-A-- V3 .
o ; v > 0 (C-33)
Let v.£=
- 06 3 <.0 . (C-3b)
I 1
Then §=‘— W-A ; ¥y < O (C-42)
ap
( o
b -v¢ ;5 y > 0 , (c-iéb)
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while

(C-5)

<
N
>
"
d
o
°
Q
L)
|
»
t
e
v
«
A
©

\

Boundary conditions on A4 : Since H is finite at y = 0 1
Vx 4=y, Himpiies continuity of 4, , &, . Also V-A is
finite. Therefore Ay rmist be continuous 2t y = 0 . Noreover
from (C-2), (since the right side is finite) H , H, are con—
tinuous. However,

34 3A

- A
uh = - e
o x oy 9z
3Ay Béx

=

o]

]
v

" , . .. . et e “
e I e Pt ALt L Slrd 4 A9 N 1 E P ) VIR A, AL
"nd‘d:y;n 9' “'ﬁ “ '{s— Kl i c‘s ; 3 "

PryvTa

/

and we have just concludasd that Ay is continous at y = 0 .
From this follows that all derivatives taken along the place

LG g

u: O P agrdy
T e ] A4V

34 aa
= y = 0 must be continuous at y = 0—in particular 32 and ‘3—}

*

are then continuous. Continuity of Hx and Hz then implies

N $. ,‘ 14 11

Y 92 °A
;§ continuity of 7E%Oand 1§§; In a2ddition, we must have fronm (C-2),

E% + zo - (Vx go) =0 at y=20
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(continuity of total current across the interface) or employing

(C-ha)

On the other hand, from (C-5)

VZA_ = oy - Vx y<O0. (c-2)

y o o B, s

Conseguently, the fluid velocity dependent term in (C-€) may
be eliminated to obtain

3
—(V-4)-9%_=0aty=0 ,
oy y

or, equivalentiy,

3%A 32a r AL 3A
¥ 4 3=-—(—x-+—-£ aty=9 . (c-9)
ax? 3z? ay\ ax az

Equztion (C-9) togetner with

T . - A g - A - .
- P — — ~--“L,~-,,ﬂ,_‘ EgPia = sy SERE ~ S R . R A Lt 5 gl
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_ 3Az| _ 3ﬁzl ;

Azl = A, s I = —= :
- o Wy ¥ + '
y=20 ¥y=0 y=20 y=0 i

{C-11)

A = A c-12
yl ! (c-12)

represents all the toundary conditions needed to sclve (C-5).

For convenience, let

¢ ¥(x,y,2) x B_ = g‘s)(x,y,z) s (c-13)

- I L - oyl & -
&tz WIivE Gue uii

{4

three components of the vector eguation
(C-5) as follows:

(C-1%a)

(c-15b)

(c-~ilic)
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It woculd appvear that continuity of the functions Az, Ax and
their normal derivatives as specified in (C-10) and (C-11) is

sufficient to uniguely determine A, and A via {c-1k4a) angd g .
(C-1ib), sincs the problem thus posed is identical to that for :

a current distribution x J(xs) + 2z J(:) in free space (i.e., ;
in the absence of boundaries). 1ile undoubtedly this would
be the solution to (C-1k), it would not necessarily be the

correct solution for the vector potential of the magnetostatic ;
problem which reaguires that {C-9) also be satisfied. z

Y i %! &ﬁ&&t&mu!wm.? N

The vector prcblem reguires che simultaneous solution of
(C-14) with the boundary conditions (C-9) through (C-12). This '
protlem is best handled by considering one component of is) at
a time. Dencte by ﬁﬁ(i = X,¥,2 I = X,¥,2) the i-th compo-
rient of the vector potential due to the j-th component of
source current g‘s). Thus, for J(z) we have

£ Fo ALY A e "
LR A s G AT,

>
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¥

ool
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VA, = -u, £s) (c-152}
v’gyz = 0 {(C-15b)
v’axz = 0 . {c-15¢)

Prom {C- 3) through (C-12) we cobserve that sz is superfluous,

so that we can set

S M e e

E__ = © (c-16)
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and we have to deal with only two components Azz > Ayz with
the boundary conditions

(S

~ A, = Al {c-172)
2 - I +
- y = 0 ty = 0
% - _17b
] aA,, 4, {c-17b) |
Wlg=0 ¥ly=o* 5
; _ A o
Ayz Ayz (C-17c) i
y = 0. ly = n+ i
32a 32 32a
vz+ 2hve TR oo (c-174)
ox? 9z? dysz

The solution for Azz is

0 ©
A, . (x,y,2) = "o/ ag'j] o’ G, (r,r") J(zs) (r*) , (C-18)

where the free space Green's function obviously satisfies the
same boundary conditions as 4,5 Ayz must aiso be linearly re-
lated to ¥, ](2) » and we can aiways write

@ anr g neiien + o

-
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= —ik o-") -k.|y-y'l
6 (r,r") = _1 I Pkp e T T

e
e

0
Ayz(x,y,z) = UJ dy'j dzﬂ'Gyz(I_'si') J(:) (") ,

(c-19)

where Gyz s an unknown function to be determined from the

boundary conditions at y = ¢ . Since Gyz satisfies the homo-
geneous laplace eguation (just as does A yz)’ We can always
write it in the form

' 1 ) 2: -igqr(grg') .
Gyz(£’£ ) - (25)2 d_i’r €. gyz(l_(_Tsy:y ) (C“ZO)

where of course y' <G , and

. ky'-X
1o e T i 5 y>0 (c-21a)
_ 12k,
By="1) ¢
e B+ ky .
i e + 5 y<0. (C-21b)
2%,

This form ensures that giz (ard hence Gyz) is continuous at

y = 0 and twice differentiable with respect to y for all y # O.
(Gyz satisfies the homogeneous Laplace equation.) The single
uninown coefficient T(_xg,r) is found by writing G O(_z:,g') in the

Fourier dozmzin and employing {C-17d). Thus, with

e e

(253 == 2kT
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one finds

T r)=_=ze€ i
23:,1, z E
(~I’ i
~ik
T = —2% . (c-22)
kT ;
¥ence;
-k (8-p")(_: -k |y¥y' |
= 1 22 o = (-ik,) T
Gyz(g,g') = a Kp z’ e
(25)%2 == 2&% /
(C-23)
where the minus and plus sign refers oy > 0 aud y < O,
Tespectively.
This integrzl has been evaluated in Appendix B, Eg. (B-11):
(eoern 1 (z-z') (le-p'|? + (%)% -js®'])
G _(r,r') =~ — — .
yz Bg lgtg'Izwfig:g'l’ + (y3v')?
(c-24)
i
180

]
¢
|




) .
plaid peisps adperdit

it

R s) _. (s)
Next, we 1iét g‘ =X,J x » and selve

via = -u ) (C-26a)
vayx =0 , {C-26b)
5 with i
!
ﬁ A,,=0. {C-26¢c)
§ Proceeding as before, .
3 0 - |
3
:3 A x(x,¥,2) = uo/ dy’ ap* G,(r,r") J(i)(g_') s (c-27) 3
3 - f
“2 0 o
E Ay (xa3.2) = u, [ ayr 2 Gy, ern) #3Xrny | (c-28) |
\' —D 0D
where
o ——
-ikp-p") ~k g |yFy |
(21)%% P’
T
(C-29)
f
:
181 ;




- s L e et P NI st sl G AN S S AR S I e St AR J A . -~ - ity

which integrates out to

1 (x-x") (y(pp")? + (3% - IyFy'D)
G (?_sr_') = - * i

yx —
= p-p'i? Jlg—_o_'lz + (y¥y')?

(c-30)

Finaliy, we turr: to the third componrent '](;) . We have
2 = - S) -3
Vg, = -ug 53, (c-31)
Obviously the B.C. in (C-10) - (C-12) are met with

A = A =0 s’ . (C°32)
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Morecver, since A__ is reguired to be continuous at y = 0,
we conclude that Ayy = constant a:= y = 0 , which we can al-
ways set equal zerc. Since V2A__ = 0 for y > 0 , we have the

yy
result that

ek sgtl e
."ﬁi.uy.ﬂ

1

VL‘-\ VXTRCIN . T -
s 2

e ,y>0. (c-33)
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On the other hand, for y < 0,

ey

B |- Ayy(x,y,z)

LS

,,ofay-f Fg o ) e, T e

Y
LR 1 ¥ 1Y

4,
:

where

ramvsy )

Gyy(E.T") G (x,¥,23x',¥"52") ~ 6 (x,¥,232",-y",2"), {C-35)

" . . e e s
R o gl e

which is the Gregn's function for the Dirichlet problem. 1In

L.
& - -
Fourier transform space one has ;

I | - - 2 -il_(_T(g"g,' ) “ley°y‘ l 'kTIy"'y‘ I
. Oy (22 = ]] Ay © = = .
- (2!)2 Ratad - ZkT

L R R
I3
[

‘ (c-36)

"

Collecting the preceding results we have

4
e

K, (x,y,2) = uof dy'ﬂ @p* G (r,r') J(Z) ") (C-372)

Ax(x,y,Z)

1]

0 i
SN VALY

[} -
far:

uo]‘ody'ﬂ-'dzgt Go(a’zv) J(sx) (E') (C-37b)
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0
uof ay'ﬂ"g' [ny(a,g')a‘:’ (£') + 6y, (r,r) £5)pe )J

; > 0
A, (x,5,2) 3

WPV Bt ot

ot i

uojpdy- ﬂdzgt [ny(E:E' )J(:) (r') + Gyz(z’E') J(:)(-I:,)-

- 1 {S) (s ]
+ ny(z,g )‘](y (r )] 5 Yy<0 .
(C-37c¢)

Faqian

AWy
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From (C-37) one notes that whereas the components of the
vector potential tangential to the interface are giver.

of the free space Green's function Go thkis is not the
the vertical compcnent.

in terms

vt

case for
Since any deviation from the "Biot-
Savart™ type integral applied to 3+s) must be due toc additional /

conduction current generated by the induced electric field

(i.e., within the conducting fluid), such electric fields evi-

dently influence only the value of the y-component of the
vector potential).*®

3
'C

g
1
e

The components of the vector potential A uniquely determine

toth the magnetostatic and electrostatic fields below and above
the surface.

given by

Below the surface the electrostatic potential is

$=-~=—=—Ve-a {C-38)

hote that if one employs the total current to find A, 1.e.,
3= o£+o(VxB), then A = A + £y, Ay = u_ 'IIJ(S)(r)
G, (z,r') d3r’, A =¥, [A - u, JIs J(s (r*; G, (r,r*) d°r'],
w‘th A_ given by Eq. (C-37c) ﬁ bein the vector potential
contriguted by the electric field induced current GE.

Al
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Continuity of ¢ at y = 0 may now be employed to obtain

WRIDLIAT W] i

g g

@
2
¢(x,¥,2) = - ‘;ﬂ dzg' _3 GO(X,y,z;x',O,z') vt « A s
uoo o oy

(c-39) {
where V' denotes differentiation with respect to x',z',y' {at
y' = 0). One can demcnstrate that (C-38) and (C-39) lead to
the same results as in Eags. (29) and (30). §
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APPENDIX D

FORMULATION FOR INDUCED ELECTRIC AND MAGNETIC
FIELDS TAKING ACCOUNT OF DISPLACEMENT CURRENT
AND MAGNETIC INDUCTION ABOVE THE OCEAN SURFACE

In Chapter III it was shown on the basis of simple argu-
ments that for time scales on the orde“ of seconds o> longer
and length scales much iess than 10°f T meters the eleciromsg-
netic- fields induced by ocean currents are governesd by the
equations of electrostatics and magnetostatics. In the follow-
ing, we shall set up the problemx exactly, i.e., we shall include
magnetic iaducticn effects and the displacement current abdove
the ocean surface. There are at least twc reasons for present-
ing the more detailed analysis. The first is to shox rigorousiy
that the exact solutions for the fields reduce to the guasi-
statis resuits under the assumptions staiea in Chapter 11i. The
second is to obtain a consistent physical picture of electromag-
netlc energy transfer above the ocean surface. Below the ocean
surface we still neglect the displacement current and the
convective trancport of crharge pV, both of which, being propor-
tionzl to €, © §%; x10 , are entirely negligible by ccmpariscn
with oE at freguencies ~1Hz or less. Thus, as the starting
point we take Eg¥. {73a) and (73b) with p¥ + ¢ ofpr glé 0 for
¥ < 0. Uniike in the analysis presented in Chapters II ané III,
we shall deal directly with the elsctromagnetic fields, without
introducing any potertial functions. At the ocutset we take the
Fourier transforms of E,H, ard V with respect to time, viz.,

E{r,t) = -21; / e ut g {r;w) dev , (D-1z2)

-l

AN AYS AR B agata e

SER NN

aeanercd > 4

TELE D s tear Bvsas

L i T R S P O P



e AN LA

¥
Es
2
=

3
E

i4
jo
]

H(r,t) = z—lx-[ elot i(g,u) do, (D-1b)
¥(r,t) = ?l;jei"t V(r,s) de . (D-Xc)

"The electromagnetic field equations for E,H, assume the form

vVx E {r,0) -imuoﬁ(g,u) s (D-2a)

<
™
=t
.

ic]
")

e
S

"

ive, E(r,w); y>0,
3 {(D-2b)

o [E(r,w) + ¥(r,w) x B_J; y<0.

Since the boundary separating the two media is the xg
Plane; it is naturzl to attempt to solve (D-2) in terms of
bidimensional Fourier transforms with respect tc the spatial
variables x,gz. Using the notation

XX, + 2z, = ¢
(x,, z Cartesian unit vectors) and d% = dxdx
and, similarly for transform variables
= 2, -
Xk, + gk =ik, @k, = dk dk, ,
one can represent E(r,s}, H(r,s) by

E(z,e) (5-3a)

]
=
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=
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H(r,s) = e K "PH(k ,5;0)a%k s

=\ j T TSR S (D-3b)
V(r,e) = j e-ign:"el(ET:vs-)dzl_(T . (D=3c)

et Noda ),'&i 1ALy . . -
sy VLY PAREY IR PR TP abi o

TN

It will be convenient to define

L )

|

+ . {

E' (pay54239>0, (D-4a) |
E(k ,yse) =} _ _ :
E T E (kp,y;3w)3y<0, (D-1b) ;

and a similar d>finition for H. With this notation, substitution
of (D-3) into (D-2) yields

+ + +
.1_1£T tE-+VxE = -iuuof_f s {D-5a) P
-1k, x yf +Vx ﬂ+ = 1us°§+; y>0 , {D-5b)
and
AE xE +VxE = -duf, (D-6a)
W xH +VxH =off +TxB ] ye0. (D-6b)

Eqs. (D-5) and (D-6) can be solved for f and ﬂi aftcr recast-

ing them in 2 form in whkich the transverse and longitudinal |
field components are separated. Thus, define {

* +
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where 3 is the unit vector in the y directlon while g? >

T
_? are fields transverse oy, i.e.,
T
+ <t *
ET SE Yz E, (D-8a)
* & *
ﬂT =x fix vz Mo (D-3b)
Since E?,.ﬁé oepend'cnly ony, k¥ and w, dbut not on
X,z, One can write - T
% e = 5
vt = §§(io x'”T) s (h-g2)
+ 3 * foy
vx ¥ =§;(_yoxy__n), {D-9b}
b T
Also,
+ <
k xE =k xE +k xy £, {D-16a)
i T T T o Jy.
E xH =k x# +k xy H (D~10b)
T T T T y

Taking account of {D-9) and (D-10) ard forming the scalar
vector product of each member of (D-5) and {D-6) with ¥, yields




;:;

o+ = 1 - + ;E

dy °l°llo ET (-yo x ET) s (D-11a) ?

s 3 .
¥y —UEO T ( P —0) ’ ( ) .\ dé
‘ 5
i . a p .\
"' Iy gk " (o E (B-12a)
. E_ = = 1’- k e [H x y -y [T xB (D-12p} i i
- Egs. {il) an2 (12) express the longitudinal field components | :
; i
'j E; s “; explicitly in terms of the transverse componenis : :
e :

IE:t ’ w . The transverse components in turn can be found from
T T

the solution of two ordinary differential equations in y. To J
see this, form a vectcr cross product of each member of (I 5) .

and (D-6) with ¥y- Thus, since by virtue of (D-10),

e
=
&
3
ol
. = %
k-
2{
g
-
A
=

Y

i= * - + -
!ox(sTx.E_)-zox(szzo E;) k Ey, (D-13a)

oy X SN ) Y ™
SR

DA W ) _ +
gox(ngg)z_yox(nggouz)- k W, (D-Am)

"
NP
[Iie4

Jo
21

_ and by virtue of (D-9;
H E
': xo.vxg_*----sg- > (D-14a)
2
*

+

]

- ¥ x # - __-_T_ s (D-~1é&b}
%o dy
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Eqs. (D-5) and (D-6) may be written in the following form: e
. ais_; +
-ix E_ - = len_ [H x
iT y 3y (—T Io) s (D-15a) :
+ aﬂT t
-iET H - -5_'— = iﬁeo (10 b ¢ ET) ’ {D-15b)
3E~ ;
- T - i
-3 - —t = N
.._T Ey 3y iwuo (HT x zo) > (D-16a)
o~
T -
-ik H - ——=3 xE\+o v xfTXxB . -16
k. % - (% .T) % ( .o) (D-16b) :
The differential equations for _E_; and y; are obtained by
substituting for E;, H; from (D-11) and (D-12). This yileids d
3E" kK k
- ayT = dww_ |1 - L 2T y (H*XY ) {D-17a) -
= - ?
k T o .
(o)
" [ kX '
T _ . _ TT +
- F = lh)t.o ; - :2 - (_3;’0 X "'11) 2 (D‘l?b)
He T
i o
3™ [ K
- _T r | fi'x 3} -iky . TzB
3y = lwu, i+ = 4= " b —TIO =" =0’ {D-18a)
IHDOC
a E Ok ]
4 _ -r. - i‘ T - ' e
! s;i o l+ Tos . (xo x ET) + o (Io XTITx §O) {D-18b)
1 where 1 = XX, + 2,20 is the unit transverse dyagdic.
% 104 b
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These vector equations can be reduced to scalar equations ;

by employing the pasis wvectors e and e X 3, to write the solu- g

T tions of (D-17) and {D-18) as
+ + z . :

=V (k,ye+V,(k,vle x3¥, (D-192)

“p 1 T T

* = Ii (kx , Ve (D-19b) ‘

H = Il(gT,y) (3, x&) + I, (k, ¥e .

!

k

_T.. .e-_-l)_
% (e - e

T

SER Saa o

with e =

Substituting (D-19) into (D-17) yields

- +
_ avy ( w3\
: e\-3% +{exy)\- 35

1 ’ -7 i t . N N B . . i
¢ Tyt (vw“w: O R R T: W L N B T LT o

. e v 'y pt Iy b ey T e A 1%

ARNE IO A snitie bl b adat Lot la o S0 y 3

’
ETrh ok 21t Ar 2246 (AN A T L iU

() A

ZECES " BNl Slakd

T
G~

A ’.!; Q}S.”:’hl. 1y :r'l‘;g\ e

+ iwu I; (e x _}_]o) (20a)

P

and
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f"_ " Since the vectors e and e X ¥y, are linearly independent, -
the scalar multiplicative coefficients appearing on bcth
sides of (D-20) may be equated to obtain
avy .
E o 2 v (p-21a)
ot
l _ . _

& o ‘3'y—- = iKYlfl 9 (D 21b)

? é% av; : + - o

N ' - 3y T A%y (D-22a) o

- 5 oIt .

2 - =5 =iy V (D-22b)

-3 > Yy 22 °?

3 3 .

4 E where

(D-233)

A G R
n
1
g
onN
]
o
v
wi\

: N .
2= Y, e, s (D-23b)
_ 1 _"“o .

> ¥ =% (D-23c)

11
N

(N PREAN

Egqs. (D-21) and {D-22) determine the expansion coefficlents
i (D-19) for y > 0. To obtain similar equations for y < 0 one
must irst express the inhomogeneous terms {driving functions)

|
i
-1kpy, - (IxB ) and o y  x (T x go) in terms of the basis N
E: vectors e and e x y . Thus, one has ¢ }
~lkpyy T X By = ~lkge (3T x B,) , (9-24)
%
e
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|
|

=tet+nlexy) , (D-25)

where

o
W

o [(3‘_-9_) By = (By2) Ty] s (D-262)

n G{['_r_' (e x Xo)] Boy -[go.(-e- x zo)]'ry}. {D-26b)

Substituting (D-24),and (D-26) in (D-18) and emrloying (D-13),
yields _

v ' v,
b i) 0 ()
i““‘o[% + ;g;‘o]. 21‘1' e + I, (g_xgo)z -inggo .('Lx_B_O)'ig , (D£27a)
o ]
aII 31z
(x xe) | - =/ ~ 55 )=

= 0’[1- + fng] ..;V;(ZOI_) + Vg _e_t + Ee - n(zoxg) . (D-27b)

(o
(V)

Again, by equating the coefficlents of e and exy,, one finds
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(D-28a)

t
|
]
Q
<
|
o
~
<@
"t

{D-28b)

-
so b\ . W, <y ‘

(1 g Alipwriblae A bivanterdy s 1 sk el v e

oof “rameiCatde S ] it 4 54 Paedifatll i LR R K B YH, 254

N T

AN N OV
i
Q,
<
Nt

- =< = ieuoz‘z' R {D-29a)

- 2
ax
T, (“ kp

1“’“0) v, + E(y) . (p-295)

To put these eguationms intc the same form as (D-21) and (D-22),

luuo‘l‘a—-‘-‘ ic 2

1

b
R

6= ix'/ZI or ZI =

al
\

8
>
a
‘,'» ;..
4
-
LE
.a
=1
b3
It
&
T8
it
=8
-~
»
Cned
P
B
Evi
2
k= =
>
2
B
-
3
3
L

The propagation constant x~ is then found from
2

kg __ (-:-)2

$ —= =
leu, G o

or K (D363

TR D!

AL

v &“( o
1

"

|

v

™

]

]

(=}

Q

+

N L]
»fml

and Z

. (D-31)

Q
o

Similarly, -

b6 st B

{D-32}
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The desired form of (D-23) and (D-29) is then

[ >
8,2

1.:-’2111 + z(y) , {D-33a)

=7
=4
=

1YV] - aiy) . (-33b)

(D-3&a)

>

Ql A
42 9
Nt

= ik ZZI

N

(o
N

I
= 1 ¥V, + Ely) , (D-34p)

9

vhere
(p-35)

£{y) = -ikgy, -(X x B)) .

Eguations {D-21), (D-22), (D-33), and (D-34; represent z
set of “transmission line" equations with sources z(y), n(y),
£(y) located in the region y < 0. Their soiution is best ob-
tained by first solving the corresponding Green's function
problems. There are three "canonical™ problems that must be
considered. They are:

Canonical Problem 1. (E-mcde current excited ty a
unit voltage source).

y<o@ (D-36)

F = itZlGl s

y=0 . {(D-37)

1 _ .
d' - itllvl -
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Here 6(y-y') is the Dirac delta function in which y'<0, and
Gf;Gl(y,y') is the desired Green's Tunction. It must satisfy
the outgoing wave condition for y>0, be continuous (together
with its derivative) &t y=0, and éatisfy appropiriate boundary
condi<ions at the ocean bottom. Data on the constitutive
elestromagnetic parameters of the ocean floor do not appear
tc be readily zvailable. Hopefully, the final results for
the induced magnetic fields ¥iil not turn out to be overly
sensitive to the eleetrical properties of the material below
the ocean floor, especially-for deep oceans. In order tc retain
some generality in the subsecuent analytical results, the
boundary conditions at y=-D (ocean bottom) will be stated in
terms of the E and H rode reflection coeffiecients 7; and'?z,
respectively. These are readily expressed in terms of the
constitutive parameters of the electromsgnetic medium filling
the space y<-D. If, for example, this medium is assumed to ex-
end to y=-= with 2 conductivity Ops relative eleztrical permit-
ivity 0N and permeabilicy ¥, then

-
174
&+
1

*D g
- we _€_r—~ic 1
Y = o_rD D . (538)
1 D _
—_— %
- -' -ll
k‘lEo;rD IGD
and
1H
_._9. - Z:
APm— Kg Z
2w AP (9-39)
_o + 7
:D 2
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where

io 2 2 °
L (D-40)

- m— -~ k -

[frn °

_ 2
"‘/;O ae
Canonical Problem 1 can also be phrased in terms of a

ifferential equation. Thus, differen-
jon in (D-36) and (p-37), and sub-

D

single second order ¢
tiation of the second eguat

stitution of - Tﬁ%-yields
" &6, o o
+ (x)°6G, =3c X s(y-y") , J¥<O (D-41)
d72 1 1
x4
a%,
5= t«x G, = o , w0 . (D-42)
d.
¥
The solution of (v-h1) for y>0 is
['] =3
6,(y,7 ) = T(y")e Yy, (D-43)

~(y¥*') is to be determined from the solution of (D-H1),

where
g form

which may be written in the followin

- ‘- py 2 3 n
. g, (¥,¥') = 4 £(3.) £(¥,) - (D-44)
y or y' while y, stands

- iy
T(y) ané f£(y) are
heomogeneons form of

The symbol y_ denotes the smaller of
for the greater of y oTr y'. The functions
utions of tke

two linearly jndependent sol
-
(D-51): f(y) satisfies the boundary condition for y<y' (i.e.,
i
ac y=-D) while f(y) satisfies the boundary condition for
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y>y' (i.e., at y=0). One finds that

Hy) = e 1% Y_ 'r‘l(o)ei‘ y o, {(D-45)
with -
2.-2

T = 221 . - (B-46)
Zl+Z1

Similarly,

1.‘(—y) =?:-le-1r (y+D) _ ei-: (y2D)

. (D-47)
The constant A in (D-44) is determined by first integrating
both sides of (D-47)-with-respect to y between the limits

y=y'-e = §'! ard y=y'+e = y] and requiring that Gl(y,y')
be continuous at y=y'. This yields

Gl(y;’y' )-élcy""y') = iK.YI s (D—ll8)

where the dot denotes differentiation with respect to the
first of the two variables forming the arguments of G

1° Since
G (yly") = A TGITGY . (D-49)
G,(v1,y") = A TGIFGY (2-50)

one finds upon setting y} = y! = y' and substituting in (D-48)
that
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- £f{z"if{y")

Employing (2-47) and (D-45), a straightforward calculation

yiz=lés

Y

i

ix‘D

4- -. -ix’D °
Yy 1(0) e

Since (D-43) must reduce tc {D-44j at y=0 the unknown function

T(y') in (D-43) 1is given dy

T{y') =

A T(y*) T(o: ,

whence the complete expression for Gl(y,y') in (D~-33) becomes

Y, T e~1x (¥74D)_ _1x (¥74D)
Gl(l'-:}") = 2—. 11 — ll-g(O)]e-lty - (D-53)
Aiso, from (37},
-— -ix (3°4D) _-ix (¥'+4D)
Y, v, e -e
"l(v,?' = E%' . - 7 lvl;F;(G) e~1=¥, (9-54)
1 ic D -ix D

AP -

Canorniczl Problem 2. (E-mode vcltage excited by a unit current

source)
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1 = A
- Ey—— 1‘ .;111 ’
dIl -“
T e N §{y-y") 5 y<o0 , (D-55)
dél _
- —dg = il:Zl.ll >
af, 2 . 6 !
— = 1Y, - .
- & ic¥;6, ;y20 (D-56) ;
iz The second order differential equation for G, reads
§-
= @ - -\22 - -
3 ——28. + (x ) Gl = 1xZ, §(z-z')Y ; y <9 , (t-5T7)
‘,2- dy i . A
2 . -
= 2—2 8 ¢ szl =9 s 7>0 . (D-58)
] dy

fiadi

The solutica car be written at once by compariscn with Canoni-
cal Problem i. Thus, comparing (D-%1) with (D-57) one observes
that the solution of (D-57) is again given by (D-53) provided
YI is replaced by Z, and the signs of ?1 end fl(o) are reversed.

1 :
Therefcre, the solution to Canonical Problem 2 is :

L)
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. _ L \
o - L
5 %
3 i
Z :
3 e - 7= Te-ix (y'4D), eix‘(y'fn) :
~ ty = ._1. 1 - -ixy -
G (y.>') = -3 — 1+7, (0)]e ,  (p-59)
; % elK D“".' (0) kD
. and - - -
2 Trei (7D), TGy D) ;
- - i
I, (y,¥") = =55 —= = - [1+r1(C-)]e iy | (p-60) ;
1 eiz -‘Y;-l’l(o) e-in: D

Finally, for the third cononical problem [corresponding
: to the H-mode voltage in (D-34)] one has tc solve the differen- ‘
f tial egquations

+¥
5
=
=3
-
£
@
I
s
3z
b
by

£3 2A
a6, 2 - g :
g —s + (x) G, = ix Z, 8(y-y') ;5 §y<o0 , {D-61)
dy
dzéz ” K4
1 5—+ x°6,=0 ;3 y>0 . (D-62)
i a
- The solution follows immediately by comparison with (D-59):
772 e-lx (¥ +D), 1E(y'+D)
Gy(%,y') = = 5+ 2 — Jz-';(a)]e‘l‘y . (D-63)
2D -~ -ix D
2r2(0) e
.

o A Ftotmain < o

Also, the corresponding current is

-1< (y'+D) olx “(y'+D)
- Zi YZ —1:y
I,(3,y') = -| 141, (0)}e (D-64)
2 " 2z, o1x D P
r2(0) e
i
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where
Z.-2.
r,(0) = 2 E . (r-65)
Zz+z2
As a notational convenience, let
o3 - —ix (y"l’D) llc-(y'*D)
1 1 F7(03 _66)
T . (y',0,kn) = 5 — 1 (0;} s (D-o
- -ic (y'+D) i (y'+D)
yA ?'e + e —-
Talysek) o1 _ [ml(c)} (D-67)
e-ix Do——b(o) -ie D
Z; 7-“ -ix-(y'+D)+einc-(y'+D) -
Tvz(y':uzﬁr) = - -'2‘ [1"’!'2(0)] - (D—-68)

eix D-o-—b(o) -icx D

The solutions to the three cononical problems may now ce

written
=ik

Gl(y,y') = TIl(y""’}iT) e M 3

K
vl(y’y') = 1 Il(y ‘B’k ) e y ’

iy

v

(;1 (ysy')= Tvl(y's"’]ﬁr) e

Il(y:Y') = 1 VI(J :“:Er) e ey s

- -3
Gz(y:y') TVZ(Y"":ET) e <y P
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) -%x ;
L(ysy") = YoTyply'susky) €7 - (D-71b)
These quantitles represent the solutions of (D-21) and {
(D-22) when the excitations z(y), -n(y) and &(y) in (D-33) and
(D-34) are repiaced by delta functions. Consequently, employ- j
ing the principle of superposition, the solution of (D-21) and ’ ?
(D-22) for excitations &, n, L are given by {
c 0
V;(y) = e~ Ixy [Zl f T1y(¥y")e(y")dy" - [ Tvl(y')n(y')dy'], _(D-‘.’Za)
- -D > |
r(
+ -1 <
I;(y) = e 1ey [_‘[ Ty (y")e(y")dy'-Yy _{Tﬂ(y')n(y')dy'] » (D-72b)
' x
p- 0 3
Vi) = eV} ) T (y)E(yt)ey (D-T32)
2 ¥) =2 | voly JEly ey s
’/
- 0
-3
I;_'(y) = e Y Yijvz(y')E(:i')dy'] . (D-73t)
- =D

The components of E, H follow from (D-19) and (D-11):

K k
R x 4a)
= 22vi(p) s EVI) (D-Tha
z k‘l’ 1l kT 2
. Kk k
. o ) R 4 vieyn (D-74b) :
xr k 1 kT 2 3 :
T ;
2
Ko, . e
£y = (D Sathld
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Hz = - kT Il(y) + kT Iz(J) s (D-75a)

. R

+ = _§. + _x + b
Hx o Il(y) +.kT Iz(y) s (D-75%)

ke 4
u; = - o LW (D-75¢)

Equations (D-72) and {D-73) wher substituted in (D-T4) and
(D-75) give transformed electromagnetic fleld quantiiies that
enter into the representations (D-3). To mzke the dependence

of the excitation coetficients cn the fluid velocity explicit,
one can write

E(E.I,,m,y') = GQ(ET) . I_(ET,u,y') R (D-7€a)

/
nlkps0,y') = oblky) - T (kgo0,3') , (D-76b) '
C(ET’”’Y') = -ikTE. * l(I_CT,ﬂ,y') s (D-76¢c) f

where k,, ET
a(ky) = q* By~ (90‘ Er—)go , (D-T7a)
b(kn) = B B_- =1 y {D-77b)
=T \kp x oy | Zo \k; TH) Y o

e=B xy - (D-77¢) y
\ !
|
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) 5:1% \“; ~" - 7 o ~ - . ' d“h . ‘L_‘“ - A‘.-~ ° : = o - .\:«, )“ - . Gy
%?M_ i sl
g 1 . %
R x
; | The cartésian components of the auxiliary vectors a, b and
- c are '
: k k kT
‘ = -2 = X .« =
az = kT BOy » ax k‘r Boy ’ ay 20 kT >
k k L I
= X = w -2 = -
b, = ke Boy > by ke Boy ’ by §o(k.l, xo)
!
cz=Box’ cxz:-Boz’ cy =0.
The source terms in (D-76) E, n, I are now substituted in
(D-72)-and (D-73) to obtain x
+ _ ic:yf i
VG0 = dy'[(-1kpZ;Tpye ~Tyob )T, (D-78) !
+ (- ikTZl Ilc T obx)‘l‘x
(Tvloby)'l‘y] ,
+ i 0
.y = o 2KY .y -
- Vz(y) e ;£ dy [chzasz + 0Tv2 x'I‘ + oT yTy] ,(D-79)
|
i + = o—ixy
l Il (y) e dy [(-.UCTC TIl YlT obZ)TZ
"(-ik,.,c 2I11 Yl‘l’vlob )'r + (°Y1 T,19P y)'ry] , (D-80)
+ 3 0
= a—iK¥ . _
) Iz(y) = e -{d} [Y T 292, T, + Yvazuax‘r (D-81)
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The spatial Pourier transforms of the electric and magnetic
fields can now be cbtained by substitusing <D-78-D-81) into
(D-74) and (D-75). The final results are best expressed 1n
matrix form with =

-

T, (kpsw53")
T(ETsw’}"_) = Tx(ET’"’y') ®
Ty(l_ET’“’y')
0
ﬂ+(_l£T,”s)’) - e"ity [dyt §(H) (_]Er:"'aY')ZQST:“‘sY') ,
o
§.+(£T:Usy) = e-—ity /dy' §(E)Q§r,w,y')1(_lg,r,u,y') .

The elements of the 3 x 3 matrices é(n) and Q(E) are:

(1) _ 2 270
Szz" = BoxllxTyy * Boy[levlkx MR 72 Il

ep

(H) _ o _
Szx "Bbziklel + Boy [’YlTvlkzkx + Y2T§2kzk¥] kg >
S(H) ='B -ki_OYT -]_Ci_UYT

2y oz L2 17'vl 2 2°v2

| Ep kqp
'}ékio kko

B 25T, - ST,
| kg

N
b
o

(D-82)

(D-83)

(v-84)

(D-84a)

(D-85b)

(D-85¢c)
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(H _ = _Zx

s = _B_ 1k, T + B[4 T,y + Y, Tl 5 s (p-854)
(H) _ r 2 279

s . p sk, T +B N T, K+, T, 1] , (D-85¢)

- kp
[
s Kl 2

J 29 ©
3 xy BIY; Tp — Tp Tpp! ————k% -8B, Y, T, kK, + Y T 5 K] ;rz- » (D-851)
3 T. .k ©
= (H) _ v2 'z
* SJ;'Z Bc? | Wk ? (.D_S %)
E T, o
E NG I L S I (D-85h)
¥x oy i
== - -
s [ k ok
:’:‘ (H) = G-E .._x. I [=
. ':{3 syy = BOZ TVZ uo + B()x Tvz muo 3 \D_Sli)
k- i /
-4 )
3 ok k
F <(E) _ - o . _ZzX
.2 “zz Box L ik, 2 TH] + Boy L Tat TVZ] z (D-86a)
&
éﬁ
2 () _ -2 2 o
Szx - Boz B‘kz Zl Tn] * Boy Lkz vl + kx Tvzl k.% 2 (o-86b)
. k ko
(E) _ = 2 X o 2 2 21 _© \
Sz:: = By, [Tv - Typd K2 * Pox [Ty k, Ty & T 15:1 k2 ° (D-B6c}
{£) - 2 21 ©
qQv=/ = - r. .
“xz Bsx L ikx Z1 1'1*13 + Boy t Tvl Ky Tv2 kz] l;I,Z 2 (D-86d)
sE = B [ 1+48 [T, -T.] Ze'x {D-86e)
0 oz ¥y 29 Ip- oy ~TVI T V2T ke >
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(E) _ Xx
S.xy = B, [T, K+ T, kTZ + B {T +T 2]1(,,2 s (D-866)
s
2, |
1KET_
(E) _ KpTys), - .
Syz = B | Tee, | Py it Kxe eO] , (D-362)
(E) ikngiq o ok
. -
() _ ff; , ok,
Sew T BN Tvl + Bbx 1T | - (D-861)
I

The matrices §FH) and ifg) are not independent since (D-83) and
(0-34) must satisfy the nomogeneous linear equations (D-5a) and

(D-5b). One finds directly from (D-85) and (D-86} that

(gT-xot) x §‘H) = -ce°§FE) s (D-872)
or
0 -¢ k|
x 0 --kz l §(H" = -ueoé(E) 35y>0 . (D-87b)
&k, 0 J

The temporal Fourler transforms of the fieids are obtained
by combining (D-83){D-64) with {D-3a) and (D-3b) tc cbtain

=~ 0
-1kn p-ixcy _
ﬂ'ﬁsz a o7 [ &y $™ (paw, y)T G0, '3 . (0-58)
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Finally, the time varying fields E(r,t), H(r,t) are
3

1‘
..—F

-p= E . i
>=3,1-rd'ei"tjd2‘ & "MJ’; ay* £ Gguy®) Tlapuy®) 5 (0-90) ;

A e,y

PR

g

- 0
"5 » 5@ 1) 1§ ty . (D-91)
H(r,t) = .2_']_-[ de eiﬂt ﬁdzl—(‘l' e 151' p-ixy i ay' S (EE”.’Y ) I_\EPU,Y ) - (D9

i e x dr s e

. \
R e

4.
2

M

Alternatively, (D-90) and (D-91) may be written as

-
o
e
=
g
<3

~ -i._k_-!,.p 2
g(?_,t) = E(EPY;t) e - s o 4

r""f-(‘

TR o

(9-922)

H(r,t) ff ﬁ(g,r_v,t) e d’g,r . (-92v)

with

AN Y

Itn »
o<
&
"
Lﬁ"~b
&

iwt -1
P L f we o SE (i 0,5") Tligw,y*) , (D-932)

4] L3 , 4
P 1

Bk .y,t) =

«® m -
1 3" fdu e e S (knu,y') Tligey') - (D-97)

=D -

~

-

 deetinapive gyt G -
4 4”““ TRATY) i »

bine

s
M4, 4 ¥

Comparing the last two exrressions with the results obtained
ander the quasi-static approximation in Chapter IV, Eq. (96),
one can make the following identification:

PR T

.
g d ~v»1‘a' 2o

o oard g ) g
ol wvdab s vones’
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L - - e » * "-* e A T €V - emeilhe
AR AR S A = ._Qi.,e»,», T e e N T i - S i it fon Kasatlanisiuin i =
tg
N
. ;g
- oY _(¥) ; - A
Glsvsy’) =y e - S U0y (5-¢4) ¥
© <
Y.CET:Y':t) 35;[ e d I(IST:“”}") > (-95) o
- B
: i-stat imat e T ) :
% i.e., in the quasi-static approximation, the matrix e 3V (K, ¥)
, is approximated by its value at » = 8. One can show that with .
. g w = 0 use of Eg. (D-85) yields matrix elements consistent with
- = s
%5 Egs. (38-100) in Chapter IV. .
?: We now apply (D-90) and (D-21) to ccmpute the electromag-
\ ;. netic fields induced by small amplitude surface waves. For sim-
: % plicity consider a unidirectional surface wave with frequency
3 H 2, propagation constant X, and 2% = Kg {deep ccean). In Egq.
g L) + =
E ’; (5‘22)’ Appendix A, we set A {&r) = A 5(51. - -x.), A \-k—T) = e’
ii« = so that the velocity potential 1is 2
2 E o
3 3 <1 Ky -iK-p + igt
2 $p,7>t) = 1K Ae e 3
%
n 3 The temporal and spatial Fourier transform of the veloeity field

is
T(kp,3,) = ReAK To(y_X-1K) e"¥5(c~K)8(u-0) - (D-56)

With (D-96) substituted into {b-90) and (D-91) the excressions
for the electromagnetic fields for 211 y > 0 become

E(r,t) =g g o iRerieyaiat f ¥ 3BV (k,0,5)-(y Z-1K)Ey* , (D-9T)

-

0
H(r,t) = UK lg ¢ 1X-p-ixy+ige f e 3™ (x,0,y0) (g K-1K) ay* - (5-96)
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The integrals are taken over the semi~Infinite y domain, in
consonance with the assumption of a "deep" ocean. These inte-
grals yleld spatially independent vectors® that depand on K
(and rence frequency), ané the direction and magnitude of the
earth's magnetic field. The induced electromz2gnetic fields
have the sace tinme-harmonic deperdence as the hydrodynamic
surface wave,and also exhibit = propagation wave character in
the transverse (x,z} pisne. The dependence on y above the
air-water interface of the form exp-iky is actually an
attanuation, since

ffoN: 2
. =V(%\‘ - x° (p-99}
Wwith ¢ the speed of light in vezcuo. From the dispersion rela-

tionship

‘=“lg‘2‘g = K l‘gz_z‘l (p-100)
Y2 g2 1‘0 c
b 44 2
ax\zﬂ -1,

where Vb = g/Q is the phase velocity of the surface water wave.
Since V fc<<l ong has x = :iK so that exp -~ ixy ¥ exp :Ky. On
physical grounds, only the negative sign applles, and (9-97)
ani (D-93) vield fields that decay exponentially with increas-
irg height above the ocean.

To simplify matters, let the earth's nagnetic field lie
entirely in the x7 plane. The geometrical relationstip between

the surface wave propagation vector X and §0,

= + Y {b-101
B B5:%s ch=c * )

is shown in Figs. 2, 3, Chapter V, page 60 (where tne notation kn
is exployed for X). The propagation vector cf the surface uave
will ve represented in polar form K, = X cosw, K, = K sinw, so
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that with a = w in Fig. 2 the unit vector 51 points in the direc-
ticn of propagation of the surface wave.

We consider first the magnetic field and let

N N A AT
Aty

(H) _ (H) 0 . axy = <F [Liw 1 2 [
>, 577 = 87k, 0,5") - (g K-1K) = S f-iK s, . (D-201)
3 1K s ()
& x x
K ()
- - -l L y -

With the aid of (D-85) one finds

(B) _ . [ R -
s, = B KKI[Ty +g (4T YT )] 1K Yooy > (D-1C22)
{H) _ K&- g m - v
s, =B IET, + £ (T K + YzTﬁ’i)] 10K Zolvdley > (b-1020) 4
X K 2
m_ , B K 1
ST P Tt 105, Ty - (p-202)

In an infinitely deep ocean one can set"i1 and ?2 to zero in
(D-66) througzh {D-68) to obtain

s ¥
R e (T A el A (>-103)
2.42
11
z- - ik ye?
L ST NS I Ak (D-1030)
Y. +Y
1%
Z- e | 1‘-Y'
Typ = - =5 [f,(0)2 X ¥V'=-8 T | (D-103¢)
“ ¥+,




; f: % For the electric field one has
: . _
s - §(E)(_I_{_,Q,y')°(yo'ﬁ-i_lg) = s'® -iK ] = (E) 3 (D-10%)
i 1K (E)
, X
E . (E)
: E Ly
o g“ Ecploying (86), §
] B rm + 8 ® -
: = 3‘2!“,2 Thtx (T XZ + ‘Q}(z )1 - 16K v9Boy ’ {D-1052) i
!
(Z) T
=-B [2,7 + —(T 1Ty ] KK+ 10K vZBay s (D-105b) ;
(£) _
Sy T By '{ T+ 6Y.T.] . (D-1052)

vl

The interpretation of (D-102) and (D-105) is facilitated by re-

solving the co=ponents parallel to the xz plane along X and

a direction norzal to K. The new vectors labeled s(F), s;ﬁ),

‘ & §§£) are

S L, ), ()
= %

(E) _ (B, (B) , (B

|
|
7]
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3 e i > e - 3 el e ‘ ‘ - -
[ (E,H) ~ T [ (E,B)
sz 2 sinw COSW 0 s, ?
sﬁE’H) = Jcosw ~sinw 0 ng’H) . (D-106)
(E,H) 0 0 1] |s(E-H)
5 y | . L y B
With the aid of (D-162) and (D-105} one finds
st - 5 ev.¢ % - B, 10KT,T (D-107a)
1 ox"2%*v2 'x 2ve ? -
sH) - 5 ¢ [KTy, + o¥,T_ ] {D-107b)
3 oV zZ 17vl ?
s{E) _ -8B K_[K2,T;; + oT,] D-107¢)
1 1'11 vl ’ ¢
sB) - n ok 7 . - 10KT B (D-107d)
3 “ox"'x"we T w2 oy N

These relations, together with s(H), séE) in (D-1C2c) and (D-105c),
respectively, pernit a decompositlon of tke eleztrcmzgnetic

fields into two surface wave modes: an E-mode having onaiy an
electric-field in tke direction of oprobngstion and defined by

the triplet (s(b‘, s§ ), siE)‘, 2nd an E-moGe characterized Dy

having only a magnetic field in the airection of propazgation,

with the triplet ’s(H’. S§E], sfﬁf).
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From (D-105c), (D-102c) and (D-197) cne finds the ratios

E) S(E) X
yA = ;%ﬁ)— = E ’ (D-108a)
3
E 2
5 (H) =-f%F;_ _ _;g , (D-108b)
s 3
y

which are recognized as the E-mode and H-mecde characteristic
2/K is the phase
velocity of the hydrecdynamic surface wave, the characteristic
impedances are also given by

impedance, respectively. Recalling that Vp

2B} ., & | (D=109a)
oV
P
ree v
e N {D-109b}
O c

where ¢ = llluoeo is the speed of light vacus, and ;o 24.32 =
377 ohms is the characteristic impedance of a place electromag-
netic wave in free space.

It ~exains now to compute the field amplitudes in (D-97)
and (D-98). The results are

oA il

.
.

¢
v (=
j[ eﬁ" ssn’(y')dy' = o(B LCOS¥ + 1BO ) —1—2 s (D-110z)
A B o’ ¥ (14v1¥1q)
H
ofF S (H) iy o . o= 1 ]
/ e 83 (y'ley' = -in-os.-.nw Box iﬁeo s (D-110b)
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0
Ky' (H) ) t = . ___L..__
sy /(y')ay* = -10(B__cosw + 1B ) — D-113c2)
0
' 1
eKy S(E) (yl)dyl = KB sinw > '(D‘l_lﬂd.)
3 ox ineo
— 1+ '1"’1(! -
G
exy's(E)’y')dy' = 10(239). (B__cosw+iB ) 1 (D-3i10e)
3 ° K ox °¥" (14 ,—1*1(;)2 > (W=210e)
0
[ &5 (£) 1
e™ s'\F/(y')dy' = -1iKB__sinrw . ({p~1101)
y - 0x ig0e
—e 140—° /1+1q
The dimensionless guantity q appearing in these equations is de-
fined by
—2—Q"°° (B-111) ’
Q= . D-111
K <
Thus far no approximations have been made, and (D-11C) are
"exact”™ to the extent thac only the displacement current in the
sez water has been neglected. First, one observes that the
qrantity
Qeo
— 1+iq (D-1312)
appearing in (D-310b, d, f) can be set equai to zero since
co::§%; x 10-’, 6 ~ U mho/meter and Q@ ~1 (for surface waves).
Second, with the aid of the dispersion relationship X = 92g,
(D-111) beccmes
q=4.827 x 10-149.3 .
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- with unity.

Por surface waves this quantity is usually small ty compariscn
For example, fcr 2 = .169 radians/sec = .0269 Hz,

(which corresponds to a phase velocity of 36.4 meters/sec) g=.1.

Assuming g<<l and setting to zero the quantity (D-112), the
“expressions for the electromagnetic fields take on a particu-

larly sirple form.

relative tc the X déirection, one finds:

a) E-mcde fields -

"
3
]
oo
o
¥

Ey(x,y,z,t)

33(1:Y:z:t) =

El(x,y,z,t) =.A93°xsinv e

k) E-mode fields -

H,(x,y,2,t) g2

5

e-Ky-iﬁfgfint

A TeIT e +-
Ag (—Q-nf' )B oxSinw e Ky-if-p+iat

cosu+
(Box os 130

) o—Ky-1K-ptigt

3

H Qu
{ — _a 82 o= e -Ky-iK-p+iQt
E3(z,y,z,t) = —-A v (——X:oxcos:d-iaey)e

, X

i . - c e
hl(x,y,z,t; iA EK'(Boxc"°“+iBo

Using the decomposition into E and H modes

{D-1132)

(D-113b)

(D-113c)

{D-11ka)

(D-11Lp)

(D-11ic)

Thes2 are the fieids of classic elsctrcmagnetic surface wave

of the ses, their phase velocity and propagzation directiocn
: b2ing identical with that of the hydrodynamic surface wave.
Eliectromagnetic surface waves are generally slow waves, i.e.,
The
ation of surface waves

having phase velocities less than t

oy W s

are slow, indeed.
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presant instance affords an iliustr
I: is of intarest to observe that the

he speed of light.

electromagnetic surface waves above the ocean are in fact

They propagate withou:s 2ttenuation along the surface

that




H
[

indistinguisheble from those that would arise in a2ir above 2 :

dielectric interface for plane waves incident from within a
dielectric hzlf space and totally reflected at the iaterface.
To obtain phase velocities as low as those of hydrodynamic
surface waves, the refractive index must, of course, be extremely
high. T?For example, if & is the angie of incidence within the
dielectric, then the product of sind and the refractive index
must be on the order of 107, which is probably w=li outside
the range of dielectric constants attalnable with existing
materials. A discussion of the relationship betwean ths fields
in (D-113) ané {D-114) and those given by the quasi-static
approximation is presented in Chapter V-D.
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E .ﬁ ) _ SMALL-AMPLITUDE OCEAN INTERNAL WAVES*
i; i; Contents
ﬁ -:’ ' I. LINEARIZED EQUATIONS FOR INTERNAL WAVES 225
2 ~ . IN A PLANE -STRATIFIED OCEAN
%‘ A. Linear Internal Waves in the Absence 225
= of Mean Shear and Viscosity
fx - B. Equations for Linear Internal Waves 238
= - with Viscosity Effects Included
= - C. Excitation of Linear Internal Waves 240
ig 43 ~ I1. STATISTICAL DESCRIPTION OF LINEAR INTERNAL 245
:Z Z WAVES
gf 4 . A. Correlation Functions and Spectra 246
= f% B. Eaergy Relations 248
: . C. Internal Wave Spectra Under Milder's 252

Energy Partitioning Hypothesis

D. Internal Wave Spectra for an Exponen- ZGd
tial Vdisdla frequency profiie

E. Towed Spectra : cn

E 4 - ,
This appendix provides the background material on

linedr internal waves, which in cther varts of
this report is used in the analysis of induced
magnetic fields. ' -
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I. LINEARIZED EQUATIONS FOR INTERNAL WAVES f
IN A PLANE STRATIFIED OCEAN £
A. LINEAR INTERNAL WAVES IN THE ABSENCE OF MEAN SHEAR :
AND VISCOSITY E
We choose & Cartesian coordinate system sucn that the xz §
plane coincides with the ocean surface and take y 2 0 above the é
ocean surface. If ore neglects Coriolis effects and viscosity, ;
the hydrodvnamic equations are §
V.
p— + pV-VV + Vp +opgy =0 , (E-1a) :
ot
ve(ow) = - 22, (E-1b)
at P
together with the incompressibility condition
V-v=0, (E-xc) ‘
where V, p, p are the fluid velocity, density and pressure,
respectively.
Interral waves are sustained by virtue of small fluctuatlons
in deasity which in turn produce fluctuations in the gravitationzl
forcing term. If we dencte the mean demsity of p by 0, then
e = B_ + ',
where p* = 0 and the condition that the density fluctuations be
szall 1s then
(012 << 3 .
.

.
alde




Similarly. the pressure p is acsumed to undergo smali
fluctuations about the mean p, so that
P=p+p',

where again p' = 0.

In most thecretical work on internal waves it is assumed
ﬁhat the principal direct effect of small fiuctuatlions in den—
sity is comprised in the gravitational restoring force This
fundamental assumption is referred to as the Roussinesq approxi-
mation. it entalis the replacement of the density o appeaiing
in this two inertia terms of the mo:sntum eguation by the mean
density p, while still retaining the fluctuzting density'compo-
nent in the gravitational forcing term pggo. Thus, subject to

the Boussinesq approximation, (E-1a) 1s replaced dy
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The scear. is assumed horizontally stratified so that the mean

density p is not a function of x and z. If in additicn ihe

mean denslty does not depend on time, the incompressibility
condition (E-ic; together with the sguatior of continuity leads
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(E-3)
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3 ¥ g_ Y0

§A
L«

P
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=
1

b

where V_ 1s the vertical component of fluld velocily.

As tae next simplifying assumption we take the mean of all
the fluid velocity components as zero, viz.,
=0 .

it Ny

t‘-zy 4(; "i J

e J fotpd

(E-%)

Nk &

<3y

eps

The ccnsequences of a nonzero mean velocity will be taken up at
Upon carrying out a statistical averaging opera- ;

it

a later point.
tion on (E-3) ard taking account of {i-h) gives
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o .-

V-V =0. (-5)
Similariy, the average of (E-2) yields
'p‘z-vy_+v;?+agzo=o. (E-6)

Empleying this ir (E-2) we have

Ip’*
e

v
at

]
+ + 2 gy, = (Ve VW -V - VV) (E-T7)
P - - - =

Equations (E~7), (E-3), and (E-lc) are the fundamental equations
for a (zero mean) velocity field V induced by smali fluctuations

of density p' in a herizontaily stratified ocean. The quanti-
ties

¢, = (T-W-¥-w), (E-8)
Boay = - ¥ - Vor, (£-9)

appearing oa the right of (E-7) and {E-3), rerpectively, are

zero rean random functicas (see E-5). If the (zero mean) fluc-
tuating veloclty field V 1is sufficiently small, the fluctuations
of 2es Bp.v about thelr means are cof a smaller orde?. With the
aid of the usual statistical argument one can then aporoximate

as Bp'v by their averages, viz.,
ey = E;.z 0,
ep'v = Bp'v =0.
227
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Once this 1is done, the result is the set of homogeneous linear
equations in V, p' and p' that form the basis for the study of
swall amplitude internal waves:

s oDyt At e
it daati sl { il ied rapuiiiAtied

¥ vV

Pt =+ R P -10
g - = p
N e
4 ' ép _ ~10b
3 5 - + v& ay o . (E )
. e

sralion

The functions a, and 3p'v in (E-7) ard (E-3) may be inter-
preted as "scurce™ terms of a linear system of equations. If
the varlance of each of these source terms is of a smailer order
than the variance of V, an iteration procedure can be established
whereby weaxiy nonlinear effects may be taxen into account, For
example, in the first iteration the source functions would be ex-
pressed in terms of the solution of the hcmogeneous linear system
(E-16). 1In the next step one would selve the inhomogeneous
linear system (E-7), (E-3) 1n which the sources would be expressed
in terms of the V and p' determined in the preceding step. In_the

fcllowing, we shail concerr curselves oniy with the zeroth order
linear system, viz., (E-10).
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We now proceed tu transform these eguations into the wave
eqiation for linear internzi waves, Since thers exist two
slightly different versions of thils wave equation in the pub-
1lisked literature, we shall carry out the derivation in detail,
thereby identifying the steps leaiing to the discrepancy.

A NP TS Ly
P, 1 8 [

¥riting out £E-10a) ir corponent form yields

Vv
24 1 30 _4 {E-1ia)
at - 3z >
p
; v
- x i 2o’ = -
E R - (E-11b)
.. p
2
v
71 _¥y, 1 3 0o =0 (E-11c)
a1 ot - o¥ = )
N P P

1o o
J
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-
] g
3 l
: After differentiating Eq. (E-1lc) with respect to the :
A horizontal coordinates x,z and Eq. (E-ila, b) with respect to \
T : ¥ one obtaisrs
: a2y 2
s - ¥, 3 2p' ., g 30" _ Fe122)
3 33z T = szay T = ez 0> (E-12a)
) P
<:
& 22y 2 .
y, 1 2p ., & 3 _ 51
e 3tax T = 9x9y = 0, (2-12pb) )
i p o ) H
: ¥V, 1 a%p' ' a f[1
E —_— —_— _= F=1
2 stoy F = 9Z3y + 9z dy (—) o, E-12c¢)
e p
>' ;3
5 e aZv 2
73 e m x _l_ _____3 p' .__ap' i .1— = —-— 3
-3 = at3y = Ixdy * 3x ay | - 0 - (F-12a)
e ] p P

PPNy

e ]

We now 2lircinzte the cross derivatives of p', and obtain the

\(’-‘L'

folloxing two equations:

N
LU SR ¥

,.n"]‘\ AL yadr

£,
o

. [?¥ 3V
= Zz2-_3 op’ d f1) _ g 3p' _
(ay 3z)+ 3z dy (._) S 9z o, (E-132)

NI RIR T Sy
b -'“ " -
e s o .
(¥
ct

oV 3V
2 f_x y 3p' 4 fi1\ _ g 3p' _ .
at(ay“a‘f)" 'sx—a—(-) > = c 0.

p
yaws 2 ap' ap' r 3
Substituting for and —=— from (E-11), yields
3z 9%
, 229
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av. v av .
2 (V=2 _Vy)_ - (2 2Tz_ & 3. 13 :
ff(ay"'ﬁ')’pdy (3)‘&— = oz 0, (B-13¢)

- x )
¥ WY s a (1YTx_ & L, (za3a)
3t \ 3y~ x ay \3) = L -

Now use is made of the linearized eguation of continmiity, Ea.

(-1i0b). We first differentiate (E-13c, d) with respect to
tire:
2 [sv av . 32v
° (iz ‘v)_se (A =- & Xel-o, (zut2)
3t 2 X 34 dy ry 3t 2 -5 3zet
2 [3v av v 2
3 (~."—.«y)—3-‘5{1(L - £ 30 -0, (E1W)
3t2 \ oY oX y 5 atz -6 oX
Trom Eg. {(E~-10b)
2% _ _dg 2Vy
3zdt dy 9z
a%p' _ _dp 2y
8xdt dy 9x °?

which when substituteéd in Eg. E-1% gives the following pair of
equations:
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52 (avz_avl)-ﬁavz- v

2 _y = &
otz \ 35 9z B a2 N5z =0, (E-152)
52 3V, 3V, w2 3%V, , 3 _
— - - = -8 == o, (£-15»}
3t2 oy 9x _g atz X
where N is the Brunt-V3ais3ld frequency given by
N2 = - 5_(32) . (E-16)
p \¥

As the final step, differentiate Eq. (=-152) and (E-15b) with

respect to z, x, respectively, Adding the resulting eguations
we obtzin

2 2
2 (%%“."V%"’y) - X Vo s V| -W3VZV =0

at? € Ty ’
where
- 3 . 9
1 % x Y
v
Since by virtue of Ea. (E-1c) VT cV=- 15% , the preceding is
egulvalent to
v
32 2 n @ ¥y 202y = -

which 1s the wave equation for the vertical velocity of small

amplitude internal waves. The cther two velocity components may
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te obtained from V_ with the aild of Egs. (E-1iz) and (E-11b) to- X
gether with the condition of incompressibility. One finds
v v
3 z X =
3% [_33:— - Tz—] =e, (=-18)
3V 3V v
z
s S5E=-51, (E-19)

gl Wars £ m"?’:: :"(‘.”‘mlh 4Pl S

the first of which is obtained frcom Eqs. (E-1la) and (E-11b)
by differentiating with respect to x and z and eliminating
—1_ 322'

B’ 9x9z ~

+e

ANy ':‘ FLIINAIR

i’

Equation (E-18) states that the vertical vorticity compo-
nent is not an explicit function of time. This component may,
therefore, be set equal to zero, since it can have no effect on
the time-dependent 1internal wave rotion,

£
et
s
-1
-

A nonzerc vertical
vorticity component can, however, be induced by viscous forces
and by the effects of the earth's rotation, In the 16tte“ case

the right side of Eq. (E-18) must be replaced by 2f y , #here
-

£ is the inertial frequency [14), The wave equation (E 17)
must then be modified by appending on the right the ternm

LA

2
Hz BV& 9 V&

g y ayz °

2

Tke entir> range .of significant internal wave phenomena is en-
corpassed withir the (radian) frequency band f < w < N

Typical values of ﬁﬁax are .5 x 10~2 rad/sec. The value of f
varies from 1.4 x 10™* rad/sec™} at the poles to zero at the
equetor. We shall be interested only in frequencles substan-

tially zbove the inertial frequency so that for our purposes 3
£ =20.
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The fundamental wave equation (E-17) differs fron that
given by Phillips [12] in that his result does not include the
term "—'772' This tern is retained by Roberts [iL] and Krauss
f151. ,quafion (E-17) appears to have been first obtained in
this form by Love [16]. Comparing our derivation =ith that of
Phillips, one firds that Phillips sets 5 = S; = constant in the
tvo momentum equaticsas for the horizontal veiccity components,
i.e., our Egqs. (E-ll2) and (E-11b}). This eliminates the ternm
é%- %: miltiplying the pressure gradients in Eqs. {(E-12¢} and
{E-124), which term then does not appear in Egs. (13) and (14).
We then c¢btain the wave ecuation

S e vesian 40 4% e ns arsiny § st | {

2
-:?2- [v’vy] + NIV, = 6, (E-20)

which is 2hillip's resuvlt. It is valid under the proviso that

v2y n2 %V 2
F 5> — == £~
y g dy (2-21)

The significance cf this restriction is best examined in
terms of the eigenvalue problem for the internal wave modes.
We therefore first obtain a representation of the solution to
Eq. (E-17) in terms of eigenfunctions in the y domzin. The
most direct approach is first to express Vy (x,z,v,t) as a bi-
dimensional Fourler transform with respect to the transverse
coordinates x,z (in the sequel collectively designates by the
vector p). Thus,

r ~iK-p ~
v, (2,¥,t) = ffe V, (K,¥,t) &°K . (E-22)
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E
Substituting this in Eq. (E-17) one finds that Vy (X,y,t) may
be represented by

y i
Vy (_!_(_,y,t) = exp E f N°(n) én
A .

. i (K)t -12_(K)t
; {An(g) e " +a(®e © ]én(y) . (E-23)

et ) T @ VAT 1w (LA i
U ol f““ { A51 0 ‘A' v ARV
ol idied PANARITAN?

kag

provided the ¢n(y) are chcsen as soalutlions of the elgenvalue.

g eguation

%

- 2

a2 a [n? X2 2 [N? )

n

The eigervalues Qn(K) are zngular frequencies that determine

the dispersion relation for eacn combonent internal wave. The .
A;(g) and A _(K) are the two arbitrary constants assoclated with

the second-order initizl value probiem in the time domain. If

the boundary cocnditions st the endpoints y = 0 and y = -D are

cf the form

E
o
bt
3

i
H
<
#

ey te =19, (E-25)

with a any real ccnstant, then the boundary value problem in the
¥ domain is hermitian, and the eigenfunctions ¢n(y) form a cor-~
plete orthonormai set [17] (excepting, of course, some patho-
lcgical N(y) profiles, devoid of physical meaning). Heference
[17] provides an extensive compendium of solved one-dimensicnal
eigenvalue problems as weil as techniques for determining
eigernfunctions from the assoclated characteristic Green's func-
tiori.  For internal wave mcdes one usually assumes that the

—e oy ™
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vertical velocity at the surface and ocean bottom vanishes, so
that a = 0. Since in a deep ocean th= Vdisilad frequency de-
creases monotonically at large depths, a mathematically con-
venient boundary condition is lim &n(y) > 0as y+» -«, An ex—
ample is afforded by a Vaisidla frequency profile that cecreaszes
exponentially with depth. Arother possible boundary ccndition at
¥y = 0 1s the free surface condition for small vertical displace-
menits of the ocean surface. Thls boundary condition is of the
homogenecus fori: (E-24) wherein ¢ # 0. One finds that in this
case Eq. (E-28) yieids one solution that is independent of N,
and which solution corresponds to small ampiitude surface -vaves.

Although the set of eilgentfunctions for the stated bocundary
conditions is complete, 1t wlil not necessarily be purely dis-
crete. In case of a continuous spectrum, the sum in Eq. (E-23)
zust be repiaced by an integrai over a cortinuous parameter.
Whether the spectrum 1is pqrely discrete or partlr Jdiscrete and
partly continuous depends or the comblnation of boundary condi-
tions and the functional form of N{y). Analytical techniques-
for determining the spectral decomposition are presented in [17]
ard [18]. Generally, for profiles that are chosen to model in-
ternal wave phenomenz in the ocean, purely Giscrete spectra are
obtalnred.

¥We now return to the question posed earlier with regard to
the guantitative significance of the differerices between Eg.
(E-17) and Eq. (E-20). Based on (E-20),

A + ig (K)t _ ig ()t
VvV (%,v,t) = E A (K) e + A (X) e on(¥) (E-26)
- n

and the eigenvalue equation simplifies to

>

: . N2 _
e ¢, () + K* = 1) ¢, (y) =0 . (E-27)
n
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Thus, one consequence of retairing %;-755-1n Eq. (E-17) is to in-
y

treduce the multiplier exp % f N2(n) dn. Since N.,~5x 1073

. o
it is clear that fcr =1l practicai purposes this factor is egual

to uaity. However, the modification introduced in the eigenvalue

probler couid be significant, since the "modified" profile in Eq.
(E-24) contains a cerivative of the Vais&ilZ frequency. Clearly,
wher the profile varies rapidly with y, Eg. (E-24) instead of Eq.
(E-27) shcuid be employed. Actual ccean thermocline profiies are
not expected -to exhibit sufficiently abrupt spatial variaticns so
as to give rise to significant differences between the eigenfunc-
tions in Eq. (E-24) and Eq, (E-27). Care must be exercised, how-~
ever, when profiles with abrupt changes are ermployed as mathe-
matical models. A case in point is the constant multiple laye.
profile. Eigenfunction solutions in this case can, of course,
£lso be obtained by a direct sclution of the Laplace’s equation
in each layer and the applicaticn of boundary conditions at the
interfaces, viz., without resorting to the formulation cf the
eigenvalue preblem for the general spatially dependent profile.
If, however, the latter formulation is used, then the correct
equation is Eg. {(E-24) and nct Eq. (=-27).

Another instance iliustrzting tie difference in the sclu-
tions of (E-24) and (E-27) arises when at the upper boundary the
eigenfunctions are required tc satisfy the linearized free sur-
face doundary cqpditicn. One then finds that cne of the soiu-
tions of (E-2%4) is a surface wave which, however, is not con-
tained in the soluiions of (E-27).

We shail only be concerned with Vaisf#13 frequency profiles
tkat are slowly varying and empioy Eq. (E-2£) and Egq, (E-27) in
the subsequernt theoretical discussion,

The two horizontal-velocity components may be found with txe
aid of Eq. (E-18) 2nd Eq. (E-19). Employing the Fourier trans-
forn representation with respect to the transverse ccordinates
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‘o -iK-p - . :
= b - -0 3
g,
'.r in conjurctiorn with (E-22) in (E-18) and (E-19) yields
"‘_i : "x(.g_sytt: = - *PZ—Z ¢n(y) An(l_(_)e + An(ﬁ)e J s (E-28)

= 0 - 1K, . o I8 @®t .1Qn(x)£§ o | |
. V,(K,5,t) = - F_Z ¢ WA (Ke + A(Ke 1° {E~29) .
7 o
i § - d - y ;

E E where ¢ (y) = iy ¢n(y). Another quantity of interest is the ‘

‘ . 3 vertical displacement of wzter particles defined by ;

E 2

on -
L A t Vy(Q_,Y:t) . (E-390)

o 11y

= 3 With

4
v
0

9 3 ®

T n'p,5,t) =ff 72 qexy,000%k (E-31)

T, 3 } ,
' g - ore finds from {E-26)

- ¢ -
E 2 . AT(RK) 12t AT(K) -12¢
A n(X,y,t) = z $_(y) |20 2%t A28 8.E]
3 = n in iG

n n n ]

(E-32)
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B. EQUATIONS FOR LINEAR INTERNAL WAVES WITH VISCOSITY
EFFECTS INCLUDED

We now examine the form assumed by the linear internal wave

equaiion for the vertical velccity when viscosity 1s taken 1ntp

account. Instead of (E-la), one must start with the Navier-
Stokes momentum equation

-~

+pV « VW +Vp+opgy = wcv . (E-33)

°
33

If we agaln assume that the mean fluid veloecity is zero (viz.,
Eq. E-4), the small perturoation argument employed in the in-

viscid case remains unzltered. Instead of (E-10a) the linear-
‘ized momentum equation reads

oot e - ()T (2-34)
0 o P
with E-10b andé E-1lc¢ remaining, of course, unaltered. As a nota-
tional convenience, let
P - Lol - w (5-35)
P

We will take v as a constant (for water at 68° v ::10'6 n’/sec).
After cdifferentiating E-34 as in E-12 and making the substitu-
tions for p' yields the generalization of (E-13):

v )') av oF doF
3"z “yy -afilz _goe'__-4df1 z_°y -
at(ay ’iz_)“’ai(g)a—'g‘z“"’@(:)Fz“(ay ’52_)’ (£-36)
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By following the san: steps as 1n (E-14)~(E-17) we obtain

2 oV

2 ' P = X ag poalafa ala . -3
7[‘72" 'z—l]* Ty " g 3% T E*&'la‘z{ Wt ’iz'Fy]*s; vy Fx~ax Fy
(E-38)

The left side is, of course, precisely the same as (E-17). We
shall now zast the left side into a simpier form. Employing
(E-35) and assuming v a constant, one can readily show that :he
jast term in (E-38) eguals -vv2v2 552% also Vp + F = w2 ;YE._
The final result, therefore, becomes v

2 - NZ av. 2 av
9 N%fﬁ' K- 9 v 2 vZé%, -
;z—[vcvy..? ]1‘ e —V-g—ﬁ #*VE y"oq (E'39)

The other two velocity components follow from the condition of
Incompressibility and the two horizontal momentum equations:

av_  av v
—2 4+ X = y (E-402)

a_ (3Vx _ BVZ - vvz avx _ de (E_‘J“Ob)
at \9z ox 92 39X °
v v
Nete that —& - —Z 35 the vertical comporent of vorticity. In

9z Ix
the Inviscid case, this compcnent was found to be identically

zero. This 1s no longer true when viscous effects are included.®

If we now assume a soluticn of the form

Ve, =~f [ amawme it ot 1802

'———-———-—-
Eguatzon 40b will be recognized as the linearized version of
tne transpcrt equation for the vertical vorticity component.
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then the one-dimencional equation for ¢ reads

()"—% (we)ag,,(l_zvxz)g;% ’f( vxz)d.+ Kz( _M@)

(E-41)

This fourth-order equation is of the Orr-Sommerfela type [193
The theory underlying its solution 1s substantiaily more
complicat2d than the theor underlying the second order Storm-
Lienviile equation obtained in the inviscid case. Althiough the
Orr-Sommerfeld eguation is ex,ens*vely discussed in the mathe-
matical literature, its appiication to the study of internal
waves in the ocean appears not to have received much attention.
It is important to note that even thcugh the viscosity coeffi-
cient v is exceedingly smali (v = 10-6 m?/sec), the solution of
Ec. (E-41) car in generai not be sttained by simply setting

v = 0 since thereby the 6rder of the differential equation is
reduced from the fourth te the second. To cbtain solutjions

for small v, one must resort to the techniques of singular y
perturbations [{19]. We shall not attempt to carry out the -
~ather intricate mathematical development at this time. How-
ever, on the basis of available theory {19] one can state that
the effects of viscosity will be strongest in the regions of
high wave numbers, particularly in the vicinity ¢ turning
#cints of the differsntial equation. Ir. addition, the whole
guestion of mode ccmpleteness which is so straighticrward in
the inviscid case, presents several delicate and as yet unre-
solved mathematical problems.

C. EXCITATICN OF LINEAR INTERNAL WAVES

In (a) we ierived the homogeneous eguaticn governing the.
propagaticn of iilnezr internzl waves. The energy sources of
such internal waves have not been included. A technigue that is
sonmetimes employed is to assume a source function on the right
of Eg. (E-17). For several reasons this 1s nct a physically
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satisfactory procedure. First, the scurce must be postulated sc
that the underlying assumptions that had been made in lineariz-
ing thke wave equation are not violated. Second, since in the
derivation of the wave equation the mean velocity field was
taken as zero, only sources which yleld zero mean velocity
fields are peﬁhissible. It is difficult to determine a priori
what constraints must be imposed on the source term to satisfy
these two conditions. To account for internal wave scurces and
at the sam= time retain a consistent framework of a lineer
theory, one can consider the internal wave veloclitles as small
perturtations about a mean veliocity field. VWe briefly explore
this alternative.

Returning to the fundamental equations (E-1), we now refor-
mulate the problem for the case of nonzero mean velocity fields.
For simplicity we exclude viscosity effects. ¥We now let

z:

i)

F+ v,

where V is the perturbation about the mean i. The other symbols
on pages 225-225 remain unaltered. Equation (E-2) now reads

_°¥ _ev _ _ — -
P tegcte(V+V) - W(V+V) +7(p +p')
+ (p' + p} gy, = © . (E-42)

In the spirit of the usual perturbalion arzument we equate terms
having the same orders of magnitude. The momentum eguation in
v is

01 a
oty [od|

+ B (V- T + 5 gy (E-43)

+ ¥(p; =0.
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Equating linear terms in V, p' and p' in Eq. (E-42) yields

&%

Pac+pl(VeW)+YV - VY] +vp

+p'lgy, =90. (E-44)

Comparing this with Eq. (E-10a), we note that Eq. (E-Li) con-
tains two terms coupling to the mean flow. These terms will
now act as sources for linear Internal waves. Next, we turn
to the continuity equation, which now becomes

(!+1_7)-V(E:-p')+5a€(3+p')=0.

Equating terms of the first two orders of smallness gives

v.ev+32-o0, (E-45)
Y by T ap'_
V-V +V-Vp +3t_:'-0' (E-46)

If we assume stratification of the density only in the y-direc-
tion, these become

< 9p , 3P _
Vyfy—*ﬁ—os (E-4T)
V.3 s T .o (E-48)
y 3y - at *
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Note that consistency of the perturdation procedure requires

%{3 % 0 unless -gg = 0 (no stratification) or Vy = 6 (zero mean
flow in the vertical direction). Thue, Egq. (E-10b) must now be
replaced by Eq. (E-47) and Eq. (E-48). The incompressibility

condition now applies to V and V separately, 1.e.,

<
I<
[

0. (E-49)

<
.

V=0. (E-50)

Thus, the linear equations for V in a stratified ocean are

v — —
btV +0'gy, = -0V -W+V- W), (E-51)

W, __7.
Vy a—y— + —a— = - ! Vp' s (E’Sz)
V-V=0. (E-53)

If the zean velocity V were zero, the right side of Eg. (E-51)
and Ea. (E-52) would also be zero, leading to the stzndard equa-
tions for linear internal waves. With V X O the situation is
substantially rore complicated, even though the eguations are
perfectly linear. In general, these equations cannot be reduced
to 3 set cf wave eguations for Vx, Vs Vo, mainly because the
source terms arising from the mean flow appear as coefficlents
in the partial differentizl equation for V. Moreover, in order
to transfer energy to the 1inear field V, these coefficlents
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must depend expilcitly on time. Only in certain speclal cases
(e.g., where V does not Cepend cn time and has only horizontal
components) dces one find that Vy satisfies a characteristic
eguation for internal wave eigenmodes. In this specla. case
the horizontal velocities are referred to as mean shear. The
equivalent profile is then found to Gepend cn the horizontal
components of V, thus substantially increasing the difficulty
in obtalning analyticai solutions for the eigenfunctions {143,
[20]. Kevertheless, if ore wishes to include source terms that
re compatible with the linearized theory, one must start with
Eqgs. (£-51 - E-52). Note that thke problem of sclving for V is
a separate affair. The equations governing f are in general
nonlinear and might have to be solved numerlczily.




PR

Yi. STATISTICAL DESCRIPTION OF LINEAR
INTERNAL WAVES

1t is generally recognized that the complexity of ocean
current dynamics comvels a statistical descriptior of internzl
czve thenomena. At the same time, a statistical model with a
useful predictive capability must be based on a hydrodynamic
deseription that holds good for a typical realization of an
internal wave stocnastic process. Precisely what tradeoffs
between physical rezlism and mathematical simplicity are per- §
rissitle carn in the final analysis be decided only by reference
to experimental édata. Since on the one hand 2 full nonlinear
Ge rip**on is far too complex, while on the other hand linear
2s apparently vielded some agreement with experimental

-k' 0'1
:"

1, we skall rastrict ourselves to the purely linear ‘
case. Ever in the pureiy linear model there are several pos-
ible levels of complexity (presumadly related to the degree of
physical rexz:ism). Thus, the most compiex linear medel would
inccrporate mean shear and viscosity, while the simplest would
eglect both of these effects, and include only the dependence
on the VEis3li frequency prefile plus scme reasonable assumpticn
cr the modal excitation coefficilents. Here we shzll confine our-
selves cnly to the simplest case, and, moreover, forrmulzte the
probler at the outset by treating the internal wave field as a
terporally stationary and spatiaily homogeneous stochastic proc-
ess., Tnis almost naive zpproach certainly makes up in simplicity
for what it undoubtedly loses in physical realism. These postu-
lates are, of course, not without precedent. They arpear to be
irplicit in past statistical treatments of ocean internal phe-
nozenz, such as, e.g., in the work of Gzrrett and Munk [8].
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The essential difference between their theory and the one
presented herein is that the statistical postulates are incor-
porated into the stochastic model ab inttio, and the conse-
quences of any additional assumptions are treated within the
framework of a systematic deductive scheme. The approach
parallels closely that presented by M¥ilder [35].

A. CORRELATION FUKCTIONS AND SPECTRA

®We shall suppose that the fluid velocity vector conmponents
Vi, V&, Vz are stationary random processes with spatially homo-
geneous seccnd moments in the transverse (x,z) plane. We de-

fine cross-correlation functions

t 3
Ruu(2:9,7) =<V, (p'4p,5,t41) ¥, {(p',7,t)>, (E-5%)

where v = x,y,2 1 = x,¥,2 , and the corresponding temporal
cross-spectra by

¢>W(g,y,m) = f Rw(g,y,r) e 10T 5o | (E-553

Sutstituting (E-26) in {E-54) yields

yy =0

a2y _/]dzbt' -iK-(p'+p) + iK'-p’ ;
ff z E' e ¢ a, . (X,Kit,1),
- - nm

(E-5€)

where
anm(;,K',t,t) =

+, . 18 (t+1) _,.. —in (t+7) . ® -ig t * ig ¢
2 (%) e + 2 (K)e Jla, ) e ® +a-(E)e ® .
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Tenporal stationarity and spatial homegeneity requires {Cf. .
Appendix i, Eq. (A-25)) that

H

i*
CEHE) AN(K'D = 3 6 8(EK') vi(B)

H

*
- - ] l t e
CA(K) A_(R') =35 8 8(K-K') y {K) ,

: 3

<A-(K) AZ(E') = <A () & (x')> , (E-56")

j.e., the excitation amplitudes of the normal mudes are uncor-
related for different mocde indexes and different wavenumbers.
The functions ¢;(§) and v;(g) are spatial spectral amplitudes.
By an argument identical ¢to that employed in Appendix A for
surface waves onc can show that they are both reai and obesy the
point reflsction symmetry in wavenumber space:

(K} = ¥ _(-K) .

ol

We sheii nenceforth write ¢n(g) for ¢:(§). Employing the above
reiations in (E-56) yields

R_(p,v,7) = l d"’K e-ﬁ. T T
yy 2 2 ¢2(3)[¢ (K)e + ¢nt:—§) e ]. (E-57)

Te¥xing the Fourier transform ané changing to polar cocrdinates
vieids for «>0

2x

Q _ ( - ‘i.%(u)DCOS(W'"B) K (m) ¢Z(y)
ﬂ(ﬂ,ya‘ﬂ) = ’Z j as e 2 1 n *n[xn(u) SW].
n 0
ax 2,(®)

KK _(w) (e-58)
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Note that

is the group speed of the n°P mode evaluated at frequency w.

_Similarly, one finds

@ (8,¥,0) =
2%
-iX_(w)pcos{w-8) =22 2.
. E J oawe ) pl¥ICOST¥ 4 K (0),w) , (E-59)
n 0 Kn(m) vgn(m)
¢zz(2’y’m) =
2% .
~iK {w)pcos(w-8) 22, .\_-.2
T E [ dwe O ¢n(§)51n w v, [Kn(w),w] . (E-69)
n 0 Kn(m) v@(w)

The correlation function of ths displacerment n is

R n(g¥,77 = <n(p'+p,y,t41) n*(p*,¥,t) ,

with the corresponding ecross-spectrum

-~
-~
<

¥ 3K (w)pcos(w-8) L2
&, (e:¥50) = 2 z Gre D op(¥) K (w) ¢ [K (), .

n 0 w? ’V’gl(u:)

(E-61)

B. ENERGY RELATIONS

The total kinetic energy per unit horizontal surface area
is, by definition,

0
1 . A
T = 5 9, f [V;(g,t; + v;(_z_-,g) + V;(Eat)] ay , (E-62)
-D
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where we have assumed the density p = p constant. Similarly,
the potentlial energy per unit horizontal surface area 1is

0

W= % Py j N2(y) n%*(r,t) dy . (E-63)
-D .

We now compute the averages <T) and {¥> .

0
-1 2 2 72
ay=Lo, [ 1<vi ¢ W 2 V> &
D

0 ©
_1 :
-1, 4 a7 - [ 10,(0,5,0) + &y (0,5,0) + €, (0,7,0)] du

® 0
P
= f dw ;o f [(bxx(o,y,m) + ¢yy(0,y,w) + d-zz(o,y,m)] ay
-D

= f Ep(s) du . (E-64)

We wculd like to obtain a representation of the temporal kinetic
energy spectruc ET(w) in terms of the spectral mode excitation
functions ¢ (K ,x). For this purpose we shall need certain or-
thogonality relations for the mode amplitudes. First, with the
boundary cnnditions ¢n(0) = ¢n(-D) = 0, (E-27) yields a complete
orthogonal set. ¥e normalize the ’n as follows:

23 = u2y = E-
f o0 N2y = (o, 650 =8 . (E-65)

Second, multiplying (E-27) by ¢_ and integrating by parts we
obtain

0
. - 3 Kz -
Ontp, - (¢.9,) + o 8 = K2(o,58,) . (E-66
-D n
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Since ‘m vanishes at the indicated limits, the preceding may be
written

L3 L4 2
K2(8,0,) + (§,8_) = ’;—2 & - £-67)
n

We now evaluate the integral over y in (E-64):
0 0

0
-D -D -D

VolK (@) ,w] , .
- 1:2 : [ (K (0) (o ,0) + —— (3 ,& ).
-t Vo () ! K (o) 70

Upon employing (E-67) we obtain

2n
LI

K (w)
ET(w)=T E 2—"ﬁ _[ dw v [K_(w),«] - (E-68)
&

n “Ven 0

From (E-63), the mean potential energy is
0

W =1, f ¥2(y) (n?(r,t)> dy
-D

0 @
= 5 Po f N¥(y) dy f an(o,y,u) de
-D -0
> o

p04 N2 (y) d:nn(O,y,w) dy

™

de Ew(w) R
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where
0

E (0) = % 9o / N3(y) ®(0,y,w) dy . (E-69)
D

Upon substituting (E-61) in (E-69) and employing the adopted
normalization (¢n,¢nN ) = 1 we obtain

VR .«,n :,‘ VRN T A AN

Ew(w) = ET(m)

..
P Y

This shows that if an ensemble of linear internal waves forms
a stationary and homogeneous (in the transverse plane) stochastic
process, then at a given frequency the mean kinetic and potential

LT B T

energies are eqgual. The total energy spectrum is then

im eian e e b b v e

&
v
b

e, 3

E(w) = ZEn(w) 2E (w)

2%
™ K {w)
=, ) ——a-). f aw _[E_(w),w] . (E-70)

The total energy integrated over all fregquencies w is:

| - I(fE(ts;am‘ f aw2r p L [K(m)dm"[x(w)’w] .

w3V gn(m)

PRTRERE

With Qn(K) = w in the nth integral, Gw = Vgn(m) dKn

® K () aw ¥ [K (w),w] K aK_ ¥, (K W) ~ o (KW)
! d/'xﬁ n'n =’Jr nFn ¥n'n - Jf K

- 2 2
mzvgn(m) 0 Qn(Kn) 0 Qn(!()
Hence, E may also be written
c 2n v, (K,w) i
E = 23p J Kdx f dw _1. (E-731)
° 22 (K)
i 0 0 n n
i 251
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The quantity

¥ _(K,w)
e(K) = 2mp Z e (E-72)

- sz;(x)

is clearly the wavenumber energy spectrum.

.8
.
X,
s
1
~8
(9% .
S
.
ko |
¥

C. INTERNAL WAVE SPECTRA UNDER MILDER'S ENERGY
PARTITIONING HYPOTHESIS

R R LA

The expressions for the velocity and displacement spectra,
Egs. (E-58) - (E-61), depend on the eigenfunctions, the associ-
ated dispersion relations, and the spectral excitation functions
vn(g). While the Vais3li frequency profile (and hence individ-
ual eigenfunctions) as well as the total spectrum are (more or
less) subject to experimental verification, a direct measurement
of the relative distribution of energy in the mode wavenumber
space, governed by ¢n(§), is much more difficult. On the
theoretical level, the physical basic underlying the form of
tn(g) must be scught in the mechanisms underlying the excitation
of internal waves. Since the excitation mechanisms are at

iy b

T RO T, T

f{ e precent not well understond, nor is it for that matter at 211
E "3 evident that the simplified linear theory is adeguate for their
% description, some "bold"™ hypothesis is needed, the adequacy of
A 'ﬁ which could subsequently be established by correlating its

% 3 consequences with experiment. One such hypothesis is due to

: 2 Kilder [9], which asserts that in the equilibrium state dee
ocean internzl wave energy is distributed among the modes in
proportion to the sguare of their individual phase velccities.
For a physical rationale underlying this assumption the reader
should consult Milder's paper.

From (E-71), Milder's assumption is expressed as
2

v, (K,w) 2 (K)
21K ——— = 2I(X) > (E-73)
a_(x) i K
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where I(K) is an excitation function which, for the moment, we
may leave unspecified. - Note that Iﬁg) may in general exhibit
directional properties in wavenugber space, The crucial
assumption is not the precise functional form of I(X) but its
independence of the internal wave mode number n. One of the
consequences of this assumption is that the spatial wavenumber
spectra of energy as well as velocity components can be expressed
explicitly in terms of the V2isdla freguerncy profile.

We first consider the wavenumber energy spectrum, Ea. (E-72).

Employing (E-73) one has

[ -]

e(K) = 20 I(K) ;% E Z(K) . (E-T4) |

n=1

This sum can be expressed as an integral involving the Vaisdla
With the aid of identities derived in Appendix F,

frequency.
viz., Eq. (F-5) and (F-7), and the orthogonality condition
(E~65), one obtains

© 0

22w =5 [ wog e, (E-75)

n=1 ~D

where
coshkKD - cosh K(2y+D)
fyy) = - . (E-76)
sinbkD

If the ocean is assumed infinitely deep and the bottom boundary
condition is taken as 1lim ¢n(y) + 0; y > - «», then the lower
limit of integration in (E-75) may ve taken as -=, and fD(y)

replaced by¥

£ (y) =1~ eV, (E-77)

—
Note that f_ is not equal to 1lim fj as D » - », since the
limiting forms of the boundary concitions in the two cases are
different (one is a limit circle, the other a limit point con-

dition) [e.f., Eqs. (F-7) and (F-8)1].
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The wavenumber energy spectrum can now be written

0
I(K) -
e® = oy — [ WLy ay . (E-78)
K2 3

From (E-57), the spatial spectrum of the vertizal velocity at
=0 is

Syy(Es¥50) =5 D~ 41(¥) [, (R + ¥, (00T (E-79)
by

Similarly, for the vertical displacement one obtains

¢ (y)
= 1 - -
Spn(K>¥,0) = 3 zn: QZ(K) v (X) + ¥ (-K)] . (E-80)

Again employing the energy partiticning hypothesis (E-73), one
finds with the aid of (F-5)

S_ (K,y,0) = = F(p i I(-E)] £,(y) (E-81)
K,y, = - . =
e 2z L 2K2 DY

This formula is guite remarkabie since 1t states that the
spatial spectrum of the particle displacement is compietely
independent of the Vais3ld frequency profile: thne dependence of
Srm on y is governred entirely by (E-76), or, in the deep ocean
approximation, by (E-77). Moreover, the simple relationship
tetween the spatial spectrum Snn and the excitation function

I(K) prcvides a means for its experimerntal determination.

The spatial spectrum of the vertical velocity in (E-79)
can also be put in a form in which the direct dependence on
the eigenfunctions is suppressed. Inser:ing {E-73) in {E-79)

gives )
i , [r® + 10k . )
n=1
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Again from Appendix F, Eq. (F-6), cre has

« G
Y emeym =k [ ®GM g2Gmy o, (E-83)
n=1 -D
so that
0
S,y (E.7,0) = & (1 + 01k [ KG™ &2y} av.
P (E-84)

Thus, the spatizl spectrum of the vertical velocity 1is
proportional to an integral involving the V3isaiz frequerncy.

Sirilar expressions can be obtained for the two horizontal

velocity components. It is also interesting to observe that

the ratio of the (spatia:i) vertical velczity spectrum tc the
spatial spectrum of the displaczament is independent of the
excitation function, viz.,
0
] 2K? f N (y") g*(y",y) ay"
s:'_y(.g_,y,o) = =D {E-85)

{‘ -
Syt K>¥50) £ (¥)

which ratio is readily computed for a particular Vaiszla

frequency profile.

The suppression of the explicit dependence of the spatial
spectra on the eigenfunctions ang dispersion relations is a
energy

direct censeguence of the assumption that the relative
distribution emong modes is in proportion to the squares of
their thase velccities, but is ccmpletely independent of the
nature of the excitation function I(X). Onr the other hand, the
temporal cross-spectra, Eqs. (E-70), and {E-58) - (E-60), do
rot attain a similar simplification but instead depend expli-
citly on the eigenfunctions and the associated dispersion

e e R e T




-

relations. Employing (E-73) one finds the following relations
for the temporal spectra of eneigy, displacement, and veiocity:

2%
£(w) = p_u? 1 f GWIlK_(w),«] . (E-86)
S n >
jg: [Kn(:n)]2 Vgn(m) 5
2=
¢2(y)
& (0,5,0) = w? ) n [ AE ), aw , -(z-8D)
nn i
o K;(m)Vgn(m} °
2%
$2(y)
@ . (0,5,6) = &° ] A I[X_(w),w] dw
Iy g K;(a‘s)vgn(u) '{ n
= wi {0,5,0) , (E-88)
1 3 $3(y) 2%
P % $__(0,7,0) = 7" n_ f K (w),sx] dw
xX ¥ * - n >
zn: (K, (w)] vgn(a) A
=& _(0,5,0) - (E-89)

It has been suggested that equilidbrium ccean internal wave
spectra are isotropic in wawve number space [81{9]. 4an iso-
tropic excitation function for which there appears soxe sxperi-

mental justification is of the form
I(X) = CK P (E-90)

where 1€ p & 2, 2nd C a constant. Ccnsider first the rather

tificial case of a constant Vais3dli freguency profile. Then,

K (0) =22y 1 . (E-91)

D \}(ﬁz-wz)
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The temporal frequency energy spectrum becomes .
o\ P ez 2125 pa (E-53)
E E{w) = 2mp_C {= ¥ === n .
3 o , p
; A w n=1
N -

Ay
1S

Thz constant C can be determined from the normaiization con-

Fndiy

straint on the total energy:

Py

)

;"l\‘ﬂl‘v' b

N
E=2 f E(w) do (£-95)
Wy

i

4
4

wnere @, is the low frequency cutoff (e.g., the inmertial
freguency). . (The factor of 2 enters because {E-94} gives only
The

g
R
e

=

the positive frecuency part of the doub:2-sided spectrum.)

.
D

4
4

constant C is then

4

,‘ ) rjg

\
]

s (E-96)

LA x v X '
! :\)0‘ ity ’;i &.‘W { k
4
)
o |
-‘:'a'
oy
v
(o)
']
o
3
it
~r
Y]
o
e

{£-97)

Lo
()
pAg
o]
-+
podt
S
1
fo
!
~~s
(o]
e
pod
L

G
g
Al v

(M1 '-i

-1
. cos i".z) .
F (—é) = Jr N tan° 8-d6 . (£-98)

7

i
b .
= i 2.)’

L1
ks d,

HAYS ,
© AT ARV IO 10204001 e ssarnet o v or somes o ov s
(4]

. W .
',‘!‘§’4 LM

A




S .
N , i
WS S

e s

KPS T
bt sl iy gl

With these normzlization factors, the temporal freaquency energy

spectrum becomes

=1
E_ [N -a772 (E-59)

(1)
F—l\ w
P\ n/ )
The temporal spectra for vertica:® velocity, horizontal velocities,

ané vertical displacement are obtained frem (E~-87) - {(£-§9).
Thus, for the dispizcement one obtzins

it ST
&

E(w) =

=)

£
=
5
2
<A
e
S
3

..p-1 o 20EY
2 s sin
d (0,y, } = E (B -wl2 %" 77 D e oage)
n ’ fws D Lt p+l
N<p P _{—)c(p+1l) @ n=1 a2
OO P\x

which has the same fora as the energy spsctrun. The vertical
velocity specirum differs from {E-10C) by the factor w’:

G%y(ﬂ,y,w) = w? G%ﬁ(ﬁ,y,m) - (E-181)
Also,
B % e I
2.2 S5 CcC=s ™
B (0,3,0) =& (0,7,0) = . LAl S - (E32)
202 Fp{:,—]: o)) & = F
\N

Trese equaticns ars based on the rather artificial model
of a2 constant Brunt-VzisZl3d frequency. There are no caustics
tuvning points) and ail modes frca the lowest to the highest
are affected by the boundary concition on the ocean botton.

It is perhaps worth comparing the preceding resuits with
those of Garrett and Munk [8]. In arriving at their formu-
lation they do not emplcy our assumptica on excitation, vie.,
Eq. (E-73). 150, they dc not use a constant nrefile but rather
one which is exponentially decreesing. They consider anly
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higner order modes with caustic boundaries (i.e., the ocean is
assumed sc deep that cnly the few lowest order modes, which
they negiect, are affected by the ocean bottom). Although such
features have no exact counterparts in a constant N-profile,

in the frequéency range w<<N we wsuid 2xpect some agreement with
the Garrétt ané ¥unk spectrum. Indeed, the Garrett and Munk
analysis dces not apply to freqguencies ciose to the local N(y)
{i.e., one must have w<<K{y) for 211 y)}. If one sets w; to
zero in the Sarrett and Munk formula for E(w), the energy
spectrum bekaves as 1/w?. This zgrees with the functional form
obtained in (E-99) for w<<N and p = 2.

This btehayior of energy with frequency in fact feilows
from the general formula (=-86) subject to (E-95) and p = 2
provided we employ the ¥KB approximation for 213 modes. The
wave-number frequency relations under the WXRB aprroximation are

K () ~ ——= - . {E-193a)
f[?iz-mzi; dy
-D
and r 2
| o 1
lf (5% -w?]% ey
v e) =2 - ] (£-193b)
n=z /. N2IN? - o212 gy
-D
Consequently,
0 1
j (42-023? dy
RVen = =L - , (E-103c)
¥2[N? —u2]7 ay

which is independent of n. If we substitute these expressions in

e e
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(E-5€) with I(K) = CK™P, the energy spectrum assumes the form

r
Cp 9 ! 0 -2
Ef{w) ~ _O’;Dj (M%-w?)2? gy f N?(N?-w?)2%ay E Ti-l—.(ﬁ-loh_)
‘Bp W -D -D n n

Under the assumption that w<<N(y), this reduces to

. [- 0 pHl
bpo 1

1
E(w) ~ —2 l_f DD S (E-105)

z !
-D n

and with p = 2 one again recovers the functional form of the
Garrett and Munk energy spectrum. This compatibiiity with the
Garrett and Munk spectrum applies to E(w), but not necessarily
to the temporal spectra of the velocities and displacement, viz.,
Egs. (87) - (89), since these spectra contain an explicit
dependence on y througn the eigenfunctions. Carrett and HMunk,
on the other hand, integrate over the height coordinate to
eliminate what they term "fine structure fluctuations™, i.e.,
the explicit deperdence on y. From the standpecint of a statis=
tical description based on the theory of spatiaily hcrogeiieous
ard staztionary pPrecesses, there appears £9 be no basis for such
an "averaging”™ operation.

D. INTERNAL WAVE SPECTRA FOR AN EXPONENTIAL VAISALA
FREGUENCY PROFILE

We now consider th2 exponential N(y} profiie employed by
Garrett and Hunk in constructing their energy spectra. sistead
of initially assuming a finitely deep ocean and then geing over
to the de2p ocean in the 1imit, we shail assume an infinitely
deeDp ocean at the outset. Thus, for

%(y) = N(0) exp (§/b); -=<y<0 |, (£-106)

the eigervalue probiem can be solved exactly since the equation
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can be transformed into the Bessel equation. When normalized
in accordance with (E-65) the eigenfunctions assume the form

¢,(3) = _l;—F :-—l'—— ‘TKb(xn;K‘b &9/P) s (E-107)
N(O0) b JKb(xn;Kb)
where
T nsxw) = 0 - (E-108)

The ¢n(y) satisfy the standard rigid 1id boundary condition at
y=90, i.e., ¢n(o) = 0; the second boundary condition 1is

i Qn(y) +0as y + - «, It should te apparent that these
elgenfunctions cannot approach those for a constant N profile,

i.e., b + ®», since the lower bounrdary of all moées comprises
caustic surfaces.

The dispersiocn relation is given by

w _ Kb T
R0 T Xgp (E-109)

With the 2id of the differentiation formula for Bess=l function

with respect to order* one finds for the group speed

X
n;Kb_ it
f de(t) 3

i zZ ¢
¥ () = o 11-2 ( © ) - . £-110)
N(0) JKb+1(Xn;Kb)
¥The formula in question is
J
4 - 22" f 32(%) dt th 3 3) =0
av J Jv%l(‘]) 0 t

(G.N.Bwatson, “"Theory of Bessel Functions™, Cambridge 1958,
p. 508.)
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We now consider some limiting forms. First assume that
Kb>>1. A typical value for b is 1300 meters. If the longest
wavelength of interest is about 200 meters, then Kb = 40 which
is compatible with Kb>>1 for ail shorter wavelengths. The
zeroes of the Bessel function in (D-108) iie in the range

xn;Kb>Kb’ Por large Kb and
y/b 3
e xn;Kb - Kb]<C(Kb) s {E-111)
the Bessel function may be appreximated by the Airy function A1,
viz.,
1 1
y/b 53 5
be(e xn;Kb)'~ — Ai]-2 rn(y) N (E-112)
2(Xb)?
where
y/b %
= -1
e xn;Kb = Kb + (¥b) rn(y) . (E-213)

1
If we denote by o the nth zero of ai(-0), then o = 'r-p(0)23
and -

X

n;Kb Kb +

on; n= 1,2, - oo (E-llh)

The dispersion relation (E-i09) may ncw be written

i

w_ - B - L S (E-115)
%N(90) A\ T - El
Kb 1 2
Kb‘l'(?) O’n 1‘15 ﬁn \?‘_)

Fer higher order =modes, i.e.,

X ey/b—xb|>o(xb)"' .

ni&d
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Eq. (E-115) no 1onger-app11es and one must employ the Debye
formulae (WKB approximation). In that case the dispersion
relationship is given implicitly by

(n.%)m
> (E-116)

4]
f d!iz(y)-ts)2 dy
51

Kn(m) =

with the turning point y; defined by
w = N(O) exp (ylib) .
If we restrict ourselves to the range of Kb encompassed by

(E-111), then (E-115) yields®

3
7'*7?
(1] N{(O
%? = (?§) -_ . (E-117)
1-

M w

(]
n(o0)

Note that for large Kb and moderate ¢, w must be close to N(O)
since by the assumption in (E-114) o, = 0{1). To this extent
the situation is no different than in the former case of a con-
stant profile, Eq. (E-91). By differentiating (E-117) with re-
spect to K, one finds _3

2 W w
Kv_ (w) = 5 N{(O) |—— - -
gn®’ "~ 3 [N(O)] [ u(a)]

¥More generally for large Kb,

n )

: A (O

-n? - necos™!n

o Njw

=2
¥b 3 o

3

For n<<], on»l, -‘;'-onz ~ (n -~ %) £ the result reduces to WKbB

P

approximation for the exponential profile; for n = 1, one
obtains (E-117).
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Note that the product of X and mode group speed 1s independent

of n, as was also the case under the WKB approxiration. For the

energy frequency spectrum one obtains the fcllowing asymptotic -
result:

p+1 7—.3_2 .3_&1
E(u)~3npoc(§) no) | ) 2 el I (E-118)

In this case E(w) + 0 as w*N(0) for alil P > 1. This shows that
under the assumption that the mode excitaticn cbeys Milder's
energy partitioning hypothesis, the energy-spectrum vanishes

at the maximum Vais3l3 frequency even if the lower boundary

is formed entirely of caustiecs.

Garrett and Munk employ the asymptotic forms of the Bessel
functions for large arguments and thus consider the range of
high mode numbers only. This corresponds to the other extrene
of the freguency scale, viz.,w<<N(0), within which (E-111) does
not hold. For large arguments

JKb(Xn;Kb) ~ 2 cos(}(n;Kb -w/4 - Kb ©/2)

3

Xn.xp — ™4 - Kb ';l; (2n-1) a/2
or
Koo == 3| 7+ %0 /2 .
Since the preceding asymptotic form holds only if xn;xb>>xb’
xn;sz (n-%—) T

wnere n is large. Hence,
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The temporal frequency energy spectrum now becomes

+1

D )
E(w) = 2Cp, (N_<0>_b) (LD) Z [_11_1 , (5-120)
d n n—-i bt
4]

k3

The sum in (E-120) is to be extended only over large n. Eguiva-
lently (E-120) is an approximate representation for & well below
N (0). For p = 2 one again obtains the functional dependence

-

on w deduced by Garrett anéd HMunk.

Wie now examine the energy density spectrum in wave number

space, which is given by Ea. (E-78). When specialized to any

deep ocean preofile (i.e., lower boundary condition lim ®n o,

y - - @) in conjunction with Eq. (E-90), the energy density as-

sumes the form

-p-2

T 2%y \
e() = 2.—.90 CK l-e )Nz(Y) dy - (E-121)

-l

Formally, 0 <K <= . Forl< p<2, Ke(X) is not
integrable over the full range of wave numbers. This can be
remedied by either assuming a different functional dependence
of I(K) on X near K = 0, or aliternatively, oy truncating e (K)
We choose the second al-
If we now

pelow some lower wave number ¥ = Kc.

ternative, as do Garrett and Munk in their paper.

specialize Eq. (E-121) to the exponential profile we obtail

T T,
e Ao PN, T e T

— . o -;;« & _/;:",{}«- _5’-,?3. ,‘)‘:‘:5;[ o 5“1’:",’:i,'~ :,"ﬁ'; P A o
- <
k]
.
5
0 ‘
» =~ Ko N(O) Kvgp (@)= w . (E-119) :
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o b 1+ Kb :
e(K) =
0; O0O<K<X, , (E-122) :
vhere we have employed the notation CD for C, to indicate its
dependence on p. With E the total enérgy per unit horizental
surface area,
o -D
E = mp_b2C_ ¥2(0) [ ax —E— | (E-123) -
p . 1+ Xb
c
one finds
C1 = E ’ (E-124)
1 + vc
ap  N?(0) b 1n p,
AY)
c .
ch E
i? p} i1 - _
mp, N*(0) b [- v, 1n N
where
We shall determine the constants Cl and C2 from the theory
and oceanogrephic data presented by Garrett and Munk. Since
their theoretical model is fundamentally different from the one
employed herein, only a nartial correspondence with their theory
can be established.
From Garrett and Munk, p. 252, following their Eg. (6.23) we
find oy = .04 cplon. This is the wave number below which the
236
| :
R ;
m— e T T L. PSR 2 ."\3’
;&'_}:{-;r:h& R = ,?4
e R -
- - 5T s AR SR S N L
T AT T L s ekl 2EEE R e i PR g TSI R N P~ PR et g™k oos



S . . : <
it Nt N rona RS A ; e a o . . 8 . N N S ) . 4. 2
TS AT e R At — T e v A v PR L e R Gy e s ey B - g h calha- i o . -t e et
&R S E2 > 220 e S TR e e T Ay & SRR e R, T Lk B I gl s B e Uy S SR W e B SRR AN, e
T L R TR T T T et PPl n A L FRTR IS R <

s
;w
4,

ceira g b s Y swiart Bl

-,
QJ
s ]

Garrett and Munk energy wave number spectrum is truncated. Trans-
lated to our notation¥, alAE K,/2m = .04 xm~!. Again from Garrett
and Munk, Fig. 1, p. 228, b = 1.3 km which eguals b in our nota-
tion. Aance, v, = ch = .3267. The (integrated) energy per unit
area, p E, equals .382 x 10" joules/m? (Garrett and #unk, p. 252).
We have denoted this quantity by E. Finally from Garrett and
Munk, the maximum Vi1s#13 frequency N = 3 eph - 8.333 x 10~* cps.
In our notation this yields N(0) = 2aN = 5.236 x 10~3 rad/sec. :
We then find from Egs. (E-123) and (E-124)(note p_ = 10° hg/m?): '
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c 1.2166 x 16~3 B (E-1272)

2

c 1.8727 x 1072 m , (E~127b)

1

LT §as YO
Y ATRRIS ;
A2 BIUMY $e VON LTRE §ACw

)

where C2 is dimensionless. As a check on these two numbers, let
us determine C1 and 02 by ccmparing the temporal frequency energy
spectrum, Eq. (E-94), with the corresponding expression of Garrett

and Munk. From (E-96) one finds

-
5

o 04
3 fab

2
4
1
3
}
&
1
d

'
A TS AP LT WY WL TITLN PIPPIeYs

1p+1 b2-p ;
Cp = 5,33 x 10”7 ‘—C(Wj— - (E-128') 3
h ) /f

We have z{3) = 1.20205, £{2) = 1.6449. Consequently, :

C, = 1.3757 x 107,

c 4,16 x 107> m .

[}

1

In vies of the crudeness of the approximation, Eq. (E-94)(which
holds for a constant N profile), the agreement between the values
in 02 obtained by these two alternative procedures is rather
remarkable. The discrepancy between the two values of Cl is
attributable to the fact that the total energy in the wave
number domain is not conserved in the Garrett and Munk formula

—
We avoid the popular but meaningless "unit"” cpkm (cycles per
kilcmeter) since a "cycle" is dimensionless.

267

B e, U ——
T e s e s = — e e -

et

Y SETAg S e e T e - - - -
AT T e S oty B L e ey AT R e - T A e, e T -
! : i e R e R B et S T Sl SR AR S T




3 3$@* ;ﬂiﬁﬁi?%Eﬁfollﬁd“”x%“mﬁﬂAE5%'&éﬁ?&i%%iﬁf@ﬁﬁﬁfﬁ&fﬂﬁﬂ
: ;
gv ) g
4
for E(w) when p is changed from 2 to 1. In all our numerical %
i calculations we shall employ Eq. (£-127). With these constants, 3
3 together with b = 13C0 meters, Vo = .327, N(J) = 5.236 x 10~ ;
rad/sec and p = 103 kxg/m® substituted in Ea. (E-122), we obtzin 3
| ;
| 1.77 S S— joules/m ; p =2 :
P = (1 + v) ve > = > :
A :
e Ke (X) :
X 3
£ 2.067 1 joules/m ; p.=1 , :
G T+v) v > !t :
3 \ (=-128) 5
: f1 where v is the dimensionless quantity %
5 E :
g 2 v =21=%b , (E-129")
k> and Xe(X) is identically zerc for v < .327 . Thus for v >> 1, !
5 the dominant effect of a higher value of D is 2 more rapid decay J

of energy content with increasing wave numbers, as one would ex-
pect. The functional forms of the energy spectra are, of course,
not independent of the VEisZlZ frequency profile. For sxample,

IS RV TR

consider a profile with 2 mixed layer rear the ocean su

"3
bty
3}
0
(1]

E
!‘J:
K
£
=,
T
i
£
A
2
%
3
3
Al

PRy N

N(¥)

—e <y < -y . (E-12¢)

At 2r oa s Lades e

One then finds from Eg. (E-121) with D

Il
N
¢ b

EN

2v y
- m/b
Re(X) = mp_cp* y2 LEV-¢ (2-130)
. v3i(1 + v)
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Ccmpariuag this with the first equation in Eq. (E-128) we observe
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The exact form of the temporal freguency energy s
is more complicated. Employing (E-86) together with I(X) = CX "
and the relations for the exponential prefile in (5-109) and

(£-110), one obtains ths followi—g:

g
E(w) = 8.792 x 10° Z n —2=2 - Joules/a? Hz,

for p = 2, and
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n n=c (n)
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or v. The phys-—

by

{£-131) and (E-132) ars the sanme as

1

n
given in the preceding discussion. The results of a numericai-
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then by virtue of the monotonicity of Qn(K), Eg. (E-142) hes
| a2lways a soiution®* for 8 = w. This means that there is a wave
number X such that the ccrresponding wave group speed eguals the
| plztform velocity. Since typically internal wave group speeds
| zre on the order of a fraction of a meter/sec. this condition
cin be s3tisfizé only for very small piatform veliocities. Fer
faster plztform velocities, viz., il
an (|
n ) < - =
= < ¥ (=_ihh
&K i _ > (=-14k)
=0
2g. (3-3142) cxn have a2 soluilor: only for 8 striccly less than =.
Typical plots of Qq(K) + XV ¢29s 8 are shown in FPig. E-3 for
the cas2> ¢f 3iow ! (E-143) noids.
< b o
s
5 |
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o i l
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‘8) i ; g t
Lhea Y o
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ATE ¥ X ~
e -nmsx . .
F26URE E-5.
*t-z- ~:—‘ - : - = "z & ~
The Q,.{¥} 3re poiptonie only if tha inertizl iresqueney ai-
fects zre regiscted. “These would m2Eify the behavior of
£,{4 at ¥ = ¢. 3Since wo neglect i.iertizl effects a state-
ment such as Eg. {E-132) is to be taken only as a2 geo-
m23:ical sroporty of a2 assumed functicnal form of Q AH}.
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e _ (2) _ i (2) .
Thus, with 8 = w/2, Kn = Kn,max’ while Kn is at infinity.

As 8 is incre=ased, the first root increases, while the second

root decreases from its initial position at infinity, both roots
reaching their final common value Ki * et ség)

s b e

Suppose ¥e now consider the frequency range 0 < o < w, -

# {‘nfr‘r .
b

14
3

Por 0 < 8 7 /2, the situation is the same as tefore, i.e., we

i
/i *2ve the sgrgle root Kn, ¥her 8 > w72, we agzin cdtain two
3 roots: xél’ ané x_ 2] ¥ow, however, the maxirmur value of B is
?E ecuzl te w, s¢ that (%;ax # éf;in » 1.e., 2s 8 increases
1 from ©/2 toward itc meximpum valus of 7, the Tw¥o roots remzin
: Zistinet. If the platform velcelity is reduced to zero, then
xézi -~ = while xél) + x_, which then is determineé by the simple
disper-ion relztion 8 () = w.
n n
In the freguency range o > Nzax the situation is substan-
ti12iiy sippier. CZince the mazximum oF ﬁr(K) + Keosd for =/2 < 8 < =
never srceeds Nmax’ thers are no roots for 8§ > /2, 2nd oniy the
single root x_ in the range 9 < 8 < =/2.
The ¢ es in Fig. E-3 have been drawn for the casz2 of low o

ing ¢&iscussaon for ¥, <w< R . applies without medification,
excert that e, = 0. since now the curve Q. ¥) ~ ¥¥ in Pig. -3
li=ss outside the -ange of positive ordinztas. Conseguently, the

Ye must stiil consider the rosts of the argument of ths

secord delta function In (=-138), i.=.

Since @ > 0, 9niy tne range 0 < 8 < 5/2 is of interest. For any
1cz2ily increasing function 9 ( %) such as in PFig.

- - - . . - 2)
E-3, {=-1kQ} czn h2ve only one rooit, which ﬁ- denote by « (,8)-

27

-y}
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The range of wave nrumbers encompassed by this root is infin.ite,

i3 < k{3(o,p) <=, (E-150)

n min

where the infinite endroint corresponds to B = /2. ¥e zlisc

note that

= L1 m‘{i

’
)
b
ksl
v

: _ rin

i V-+0 >

é I ¢, just 1like «(2) ising from the first delta
so that this rsot, just like Kn arising the fi del

function, describes 2 purely motion induced effect.

By way of summary we 1ist in Getail the various parzameter

4‘.\ ST e

i}

ranges in the "zugm2nted" dispersion relationships (E-1E0) amgd

3 (E-1£9}:

Y

E w > X
“max

"
(=)

(1) ¢ {¥) + EVcosB
has one sclution K=xn(u,3); X min <o <% 0<B<z/2
(3131) 2 _(X) - KVcosB + w = O

(
kas one solution K=k )(w,B); X <K <w; < B<E/2.
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(1) Qq(K) + XVcos8 - e =0
hz kree soiutions, 3 (= 5, < . <k _<
nzs three solutions, 1) K Kn(o_B), kn’mln Ko Kn,max’0<85?/2
(1) (1) . (max) (n)
= < ‘< ) =/2 g\
2) Z=xy(e,8), “n,max**n “%p sF/2<8<Eax
I's
- - Zax 2 H
3) 2= (P 0,8), 552 ecPec, 2/2c5e5(0).
(11) S_(K) - K¥cos§ + w = 0
. (3] (3) (3)
1 ‘= g < < <
has one solutinn ¥ Xn (w,8), Kn,mm L =, 0<8<w/2.
(E-152;
0<w<w
c
Tre same &s in the preceding case, except that Eéii = ¥ and
(1) (2) {27 (2)
< < < e
Kn,maz “n rn,max’ n,zin *n =, where
(1) (2) (E-153
(1) £-153)
tn,zaz # Kn,min 23
%ith the ald of these resuiis we can now integrate {2-138) with
resject te X. For the case w > N we cbtain
=ax
/2 3) <BNa% (3
) (K Waskn(.f:‘n)nn(xn) hj (x § G,S)%(V ) (( )

Ny =
Pyy o) {é

»(E-154)

3

(3)

[v (K }4Vboss][r ] [Vcoss-v (x )1{ N

where we have used the notaticn ¢ \y,r ) to bring attention to

the fact that the eigenfunctions generally depend on X which,
in this evaiustion, must be replaced by K, °° r(3). For the
=79
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=
Sy

case o
C

3 &P,y 2l (3

3s ,u+n,s)¢§(y,nn)nn(xn)
[VeosB-v (K(373][K(3)]2

(V) - n !
& (y,w) = dB} -
¥y 'o[ ‘ zn: ngl(xn)chsB][xn]

B(n)
(sz)m,m 8\¢ 2(y,x (2))%( (i.))

d . (“‘155)
ZZ f Vg (Kfzy)'l'VCOSBl[K( )y )

=1 n u/2

The expression valid within the frequency range 0 < w < w,
(n by w. The range of

can be obtained from (E-155) by replacing 8 nal
that the integral
An exact evaluation

integration is then the same for all modes, so

can be brought outside the summation signs.
of these expressions would be a formidadle numerical task

primarily because of the explicit dependence on tke "augmented”

dispersion relations.

We now consider the special case of fast "tow speeds” V
ané frequencles greater than the maximum VEis3ld frequency.
Clearly for 8 ¥=n/2 and V sufficiently large, both of the "aug-
mented” dispersion relations, viz., (E-140) and {E-149) have iden-

ticail asymrtotic sclutions fer X, viz.,

- m ——
K ~ Fo05F - (E-156)

If the excitation function j appearing in the numerater of

(E-154) decays sufficiently rapidiy in X space, then the net
contribution froa the neighborhood of 8 = 1/l is small
Under these

(recall that both X and <é3) + o as 8 + w/2).

conditions we can set
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k4 K~ g = 6 3 g - % (E-157)
?4' and thus obtain an asymptotic approximation to (E-154) for large ;
é' : V. Since to the same order of approximation, :
— =5
i; }? Vgn(rn) << VcosB , g
5 33 :
‘:: ;§ Vgn(xg3)) << VcosB , ;
o %% the asymptotic approximation to Eg. (E-154) becomes é
E 3
b S 1 2 1N L2l i
2 <byy (y,0) ~ ;fdsij(x,um,e) + 31(%,0,8)] & L ¢ (¥l (X), (E-158) :
E Vo 0 n
B :
;‘ where K is given by (E-156). Eq. (E-158) holds for tow speeds
/%" which are much larger than the wave group velocities and for :
f{? w > Nmax’ Unfortunately, a2 similar asymptotlce development does ;
E: nct hold for w < Hmax’ i.e , in (E-155). This is clear from the i
B = w/2 need not

dispersion curves in Fig. E~3, which show that
correspond to 2 large wave humber.

S e,

The «<lcged form of the last sum we have already empioyed in
Thus, with a refer-

)

the representation of the spatial spectrum.
ence to (E-83), the preceding reads

H 4 l,}'\" )
L& (R.

n/2 G
(). 1 .35 B
@iyzb,w) ~ E'[dﬁ!{ td (K,(!*!‘T{,B)*Fj(i(,(!,ﬁ)]f )gz(yn)gZ(y"’y)dy“.(5-159)

The asymptotic expression for the spectrum of the displacemenﬁ
- —— - - ,- 2

is cbtained fron (E-158) by replacing Q; with h:. The sum 1s

then carriled out with the 2id of (F-5), with the result
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n/2
QIEX)(LM) ~ -élafdﬁ (3 (K,a+k,8) + 3{K,a,8)] £5(K,y). (E-160)
Veo~o

0

Just like the correspornding spatial spectra, (E-81) anéd (E-8i4),
Eﬁs. (£-160) and (E-159) involve at most a dependince on the
Vaisala profile, i.e., they 4o not depend explicitiy on the
details of the dispersion relations.

Suppose we assume that the excitation function I{X) is iso-
tropic in wave number space and of the form (E-9G). If we also
use the deep ocean approximation for fD(K,y), Eq. (E-77), then

the asymptotic form of the (temporal) displacement specirum in
(E-160) becomes

n/2
(v) _C das 2Ky {E-161)
°nn (y,w) = J P Q-e"v) . \

with the aid of the transformation £ = secf this integral can be
put into the following form:

¥V (g,0) ~ ovF P f (*-ca’vz)——“——— . (7.-162)
Voo 1 Py g2

-~

On the other hand, from (E-81) the spatial wave number
spectrum of particle displacement for the same excitation func-
tion under the deep ocean assumption is

3 = _C_ ‘p-l I ZKy\ E-
xsm(x) > | (2-e“™Y) . (E-163)

Comparing this with (E-162), we observe that the towed tem-
poral spectrum contains as a factor the same characieristic de-
.cay law in frequency. This decay law is, however, modified by
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the integral. Had we assumed a unidirectional wave number spec-
trum, then the dependence of ¢ﬁz) on freguency would havé matched
exactly the functional dependence cf the spatial spectrum on

wave number. The discrepancy between the two functional

forms is a measure of the effects of wave number isotropy.

Such effects are weak only at high frequencies and large :
Kly]. Thus, since the frequency dependent vpart of the integral }

43 e € T 3 Rk g

s by e T v DU fuerny fo il

RN R RRNE *Y
SR e Sragns un,

e,

contains w only in the argument of a2 decaying exponential ‘re-
call that y < 0, while £ > i), we have for I%?] >>1, ; :

¢ (y,0) = [cvP / -:l—f%— 0Pt (E-168)
1 PN efa i

On the other hand, for K|y| >> 1, {E-163) gives

~ i —p”l 1 i
RS = 55 K . (E-165) Y

Of course, the form of (E-162) is sufficiently simple so that
; it can be evaluated for various combinations of tow speed and i

srg
SUVLLY REWVRITAE. TS A

decay constant p. Since the towed spectrum is a measurable
quantity, calculations based on (E-162) are subject to direct
experimental verification. It is important to note that (E-152)
holds for any VaisZlid frequency profile in a sufficientiy deep

' ocean (e.g., greater than 3000 m). The assuxrptions underlying 3
(E-162) are: (1) Milder's energy partitioning hypothesis, (2) T
s the functionai dependence of the excitation function on wave

00

L JETNSAS e b
...nw-L-»L L T

Tepr A

e s e

number in the form CK ©, (3) isotropy of the wave number
spectrum, (4) fast tow speeds and w > N_..> an¢ rinally (5) the
validity of the linearized theory together with stoctrastic
stationarity in time and space. Of these assumptions, (2) and
(3) are readily altered. Thus, expressions similar to (S-162)
can be obtained for other than-the power law functional dependence i
of the excitation function.
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While the displacement spectrum is independent of the

VYaisalz frequency profile, the spectrum of the vertical velocity

in (E-159) is profilie dependent. For any specific

profile (E-159) can be readily evaluzted, again affording
theoretical results that can be compared with experimental data.
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APPENDIX F
IW0 IDENTITIES INVOLVING SUAS or ucicuTsn EIGENFUNCTION PRODUCTS :
;l
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APPENDIX F j:
TWO IDENTITIES INVOLVING SUMS OF WEIGHTED EIGENFUNCTION PROBUCTS ]
We suppose that ¢,1(y) is a complete (discrete) set of. eigen- 37
functions to the eigenvalue problem
a2 o f W(y) )] o
[dyz + K ( art - Y] e - e (F-1)
with the boundary conditions
¢n(0) =0 , ‘
(7=2) :
¢p(-D)=¢ ; -D<y<o0 ,
or :
H i
5
: 3,(00=0 ,
H (F-3)
He ¢ (¥) 0 ;3 -=< y¥<0 .
yr-o n - -
The eigenfunctions are norm2lized in accordance with
3 0
4 [ e i &y = 2 (7-4)
3 ~D
where D » « for the boundary conditions (F-3). Tnen the following
! identities holad:
B 237
i : . B T e =
3 ; = =738 LSl F L i i e e
.~> g < M - = ‘. . & -
% ‘s ,,ﬂzmé 7z 78 L
) é it p———"
— & —
- & = 3
": e e hd e > LT N, :iﬁ
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-
Do @ e () o (v = KE(y,y) (F-5)
n=1 2
© 0
:E: (X)) 9,(3) 4 (3*) = B ’I N {y") g(¥35") s(y,y") ay® E
(¥-6) E
where

P ASEEA ALY tes e T i

sinh K{y_+D) sinhXy_

LRI PIN

s, for B+C (F-2) (P-7)

g(3,¥7) = :
3

4

K§< sinhi(y> . ;

e > for B-C. (®-3} (#86) :

7

-
\

Y
[

These identities can be inferrsd from a more general result
given in Ref. [21]. Here we present a direct proof of these

important relations. .
Precf:

By virtus of the normaiization (F-3}, the "completeness®

en in the follow-

ofr

relation for the eigenfunctions may be writ

ing form
et
o T - <
Qs 5 (v-y7) :
p3s: 4 vy = Biy-¥ e
g E ; 2.(¥) ¢, (¥v*) ﬁ;%g%y (F-9)
x| n=1
e
&4
L - *;{ & .
,";5 iLev = a_fZ_ ana
N e
e
\ s . ~
3 h = E Q; ¢r(y) ¢n(y'). Then upon taking zccount of (F-1)
b - 2 -
’ =1
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§§‘ one has
-ﬂ:"
3 - ®
~;; = 2 T . = 2 ! - _Hz_(l
) Xh Z 2 enly "{¢n(y) Znn on(yI | 1 Q2 Kzén(.‘{) . ;
<3 n=1 1=1 T
H
g In view of (P-9) this may be rewritten as feliows:
3
4
s 2
= a’h _ gz = - 82 8(y-y') -
3 dy*
Withn h=-Kg , g 1is the solution of
)
@ _xz)g= &(y-3") (7-10)
dyz & = y-y : - I
Evidently h and g must satisfy the same boundary conditions 2as
¢n(y)- Conseguently, the Green's function problea in (®-10) must
he sclved subject to (¥-2) or (F-3). One tnen finds that g is
given by (¥-T) and rz_B), respectively. This establishes (r-5}.
To prove (¥-6) we repeat tne sazme procedure for the func-
tion
(-4
£ ot = L a?
£f(y,7") E  o,{¥) ¢, (¥7)
n=1
(- -3 <«
Thusif = 2 Q¢ (y')xc) (¥) = E o o Cy‘){l A €2 B C
; 'n 'n n”~ n 'm \ Q2 " 'n
n=1 n=1 n
wnicn is eguivalent to
- -]
2 I'd
d’f _ g2r=- ¥¥(y) ¥ Z:zg 6, (¥) ¢ (32
ay? n=1 :
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s the solution of
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5
[+
[47]
-
L)
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<
-
o}
~’
fooe

.
-

satls e

5

e

&

5
o

=
%

el
2,
=
e

=

b9

2

= -X £(y,¥") = K*R2(¥) g(y,y') . (7-11)

kgain, f{y,y') must satisiy the same boundary conditions as én(y).

e wand hkl.u‘i\» RI% w’{\(q”. waeficl ﬁ. “w

Conzequently, {F-11) is sclved by the Green’s function in (¥-10),

s b
Yarsd

viz.,

R AR te Y (VLT PT SNOP

0
fly,¥') = K"_,[ dy" N3 (y") g(3",5') s(F,3™) (F-12)
-D

s
BRIV

‘\
R

PR TR

wnich proves (®-¢) .
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